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Abstract 
 
 

An introduction of reservoir modeling is a useful knowledge for structural 
engineers to extend their job opportunity. This thesis presents discretisation 
of fluid flow equations inside reservoir in simplistic models and visualizes 
into some graphical profiles. We start with Darcy’s equation and mass 
continuity equation to derive pressure equation for single-phase flow 
through finite difference approximation. We then carry on multi-phase flow 
derivation under IMPES method, which involves relative permeability 
function inside saturation solver. Multi-phase flow that we present is water-
oil system in 2D areal model. Later we disclose the effect of mobility ratio 
on oil displacement efficiency through Buckley-Leverett solution. The 
solution defines the position of fluid front against time during water-
flooding process. We also present some flow profiles of the existence of 
barriers inside reservoir. This attempt is meant to close the real heterogenic 
condition of reservoir. For result comparison, we also review some methods 
of the implementation of higher order finite element for flow approximation. 
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Nomenclature 
 

Latin 

A  area 

a  transmissibility matrix 

fw  water fractional flow 

f(S)  fractional flow as a saturation function 

g  gravity 

h  height 

K, kabs  rock permeability 

    mobility in x-axis 

 y   mobility in y-axis 

keff  fluid phase permeability in multi-phase flow 

krw  water relative permeability  

kro  oil relative permeability 

L  length 

N  number of grids 

p  pressure 

pc  capillary pressure 

po  oil pressure 

pw  water pressure 

Q, q  sink/source points (production per unit time) 

S  saturation 

So  oil saturation 

Sw  water saturation 

Sor  oil residual saturation 

Swc  water residual saturation 

T  transmissibility matrix 

t  time 

U, u  pressure  

V, v  mass velocity rate (unless differently specified) 

x, y, z  distance at Cartesian axis 

 



Greek 

                      mobility   

  mobility in x-axis 

 mobility in y-axis 

 viscosity   

   mass rate 

   rock porosity 

Δt   difference for time derivative 

   partial difference 

Λ  Λ . 

  reservoir boundary 

 

Superscript/Subscript 

i  unit vector along x-axis  

j  unit vector along y-axis 

n   iteration at nth 

o  oil phase 

w  water phase 

x, y, z  directions in Cartesian axis 

T  total 

 

Operator 

   gradient 

   Laplacian 

.  divergence 
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 Introduction 

 

 

1. Introduction 

Today structural engineers are mainly assigned for structural facilities project 

with straight dependency on global financial condition of the region. This is because 

construction industry is generally long-term needs of people. In the other hand, mining 

industry or more specifically petroleum industry in which civil engineers are mostly 

dispossessed seems to be more stable since the product is people’s daily consumption 

and generally leave the reliance stability to international political condition. Later 

chapters will show that any engineering disciplines with numerical analysis background 

may learn and take part in petroleum industry. However, a meticulous interpretation in 

every subject may still require ones who understand mathematical analysis and 

philosophy of the subject. 

One of disciplines in petroleum industry is reservoir engineering which strongly 

related with other engineering discipline through numerical solution in fluid mechanics. 

Reservoir engineering is basically an engineering discipline that deals with a task of 

how to acquire oil inside a reservoir. The reservoir is normally multi-layers of 

permeable rock that located deep inside the earth surface. In other word, the simulation 

model is based on the understanding of fluid flow in porous media1. Reservoir 

modelling, more specifically, is an intersecting point of some other disciplines. To 

mention some disciplines that contribute to reservoir engineering are fluid dynamics, 

petrophysics, grid generation, seismic interpretation, geological modelling, and other 

data interpretations. Reservoir simulation allows us to gain better insight of petroleum 

recovery mechanism2.  

                                                            
1 Source: [1] 
2 Source: [1] 
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Figure 1. A five spot pattern of reservoir model.3 

We, in this book, adjusting with the provided time to accomplish this book, try 

to develop a simple model of flow inside reservoir. Since it is a simple model, any 

advance heterogeneous rock properties (e.g. rock fractures) are neglected. Generating a 

reservoir model with simple finite difference discretisation is one way to start 

understanding the reservoir recovery mechanism. Through MATLAB®, we visualize 

our first finite difference discretisation on single-phase flow to solve pressure equation 

derived from Darcy’s velocity and mass conservation equations.  

Involving some more properties such porosity, viscosity, relative permeability 

and saturation, we then develop the discretisation on two-phase flow under water-oil 

system. As mentioned in the name, we use two-phase flow model which is the fluids are 

immiscible to each other. Unlike miscible flow (e.g. gas-oil system) where gas here will 

come out with oil together at the outlet, in the other hand, water here will push the oil to 

the outlet. Therefore, we can expect that the oil produced at the outlet is water-free, until 

the breakthrough time when water has reached the last grid block. Under two-phase 

flow condition, we use IMPES method to solve the equations that consists of pressure 

and saturation solvers. We also include some analysis of alternative implementation of 

higher order finite element for grid analysis in solving pressure equation. Other papers 

we will review later, result the use of control volume distributed (CVD) indicating the 

improvement of fluid front profile in two-phase flow. These methods are solutions to 

cope with non-uniform grids in reservoir discretisation. 

Under IMPES, the approximation is a time function discretisation that involves 

some variables such Courant restriction for time step and Bukley-Leverett solution for 

oil displacement analysis. In particular, Courant restriction or known as CFL number, 

will give us insight of the saturation profile at any time step between Δt = 0 and Δt = 1. 

Further will also present that typically the homogenous areal model fluid breakthrough 

                                                            
3 Source: [9] 
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takes place when the injected water has fulfilled 0.6 – 0.7 pore volume of the reservoir. 

Buckley-Leverett equation will provide us with equation to define the position of fluid 

front at time Δt. From this stage, we will notice the role of mobility ratio to the 

displacement efficiency. 

In the real condition, reservoir is normally not as simple as we model. Some 

barriers may exist inside. The barriers physically exist as impermeable rock layer or the 

one with close to zero-permeability. In this book, we also try to visualize the flow 

profiles with the existence of barriers. 

 

1.1 Study Objectives 
 

Introductory to basic analysis of reservoir modelling is of our primary reasons 

for developing this report. Our main professional background is civil-structural 

engineering. We dealt with axial element analysis and its structural behaviour under 

dynamic forces with finite element-based packages. It helps to understand some basic 

numerical analysis required to develop MATLAB® coding for reservoir discretisation in 

this report. We realize that this discipline requires optimization more than what we used 

to carry on in practical construction industry. Nevertheless, we hope these basic 

understandings of reservoir modelling may lead to wider professional job opportunity 

and foundation of further study in this particular discipline. 

In more specific objectives, we expect to achieve some points we mentioned 

above. Summarizing the discussion, the points we expect to achieve are listed below. 

1. To discretise pressure profile of single flow through 2D areal grid-blocks from 

Darcy’s equation and mass conservation law with finite difference 

approximation. 

2. To discretise governing equations for two-phase immiscible fluid flow in 2D 

areal grid-blocks with IMPES method. 

3. To profile the discretisation of the equations (single-phase flow and two-phase 

flow) through MATLAB® coding. 

4. To visualize pressure, relative permeability, fractional flow, and saturation 

profile of the flow. 

5. To review the implementation of higher order finite element method as the 

solution for flux approximation on unstructured grid in reservoir modelling. 
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Single-Phase Flow 

 

 

 

2. Single-Phase Flow 

2.1 Constructing uniform grids in 2-D 

The first step for discretising the model is constructing grids. There are two 

model types in 2D Cartesian grids. 2D cross-sectional (x/z) grids may be used to study 

vertical sweep efficiency in a heterogeneous layered system, calculate water-oil 

displacement in a cross-section with geostatistic features, generate pseudo-relative 

permeabilites, study the mechanism of a gas displacement process to determine the 

importance of gravity etc. The second type is 2D areal (x/y) grids may be used to 

calculate areal sweep efficiencies in a water-flood or a gas flood, examine the stability 

of a near-miscible gas injection within a heterogeneous reservoir layer; examine the 

benefits of infill drilling in an areal pattern flood etc.  

 

 

 

 

 

 

 

Figure 2. Areal 2D model with an injector and a producer. 
 

In this section, to emphasize the effect of well pattern and assuming that there 

will be very little vertical movement, we use finite difference point distributed grids in 

areal model. From the point distributed grids method, we have ∆ / 1 , where 

the first and the nth points will be at x=0 and x=L.  

 

 

 

 

2 



5 
An IMPES METHOD FOR TWO-PHASE FLOW RESERVOIR SIMULATION 

 

 

 

  

 

Figure 3. Point distributed grids 

For the discretisation, normally it is assumed that rock properties such as permeability 

and porosity are assigned to grid blocks. The fluid transfers from one block to the rest of 

the whole reservoir through immediate neighbouring blocks. In 2D model, there will be 

four neighbouring blocks as figured below.  

Figure 4. Neighbouring blocks in 2D model 

 

2.2 Governing Equations for single flow 

Similar to heat transfer equation, Darcy’s main equation for fluid flow in porous 

media is proportional combination of fluid pressure and gravity in permeable layer. 

Flow equations from Darcy velocity state: 

 

                              (1) 

 

Here v is volumetric flow density and  is permeability over viscosity (mobility of 

fluid) and p is pressure gradient. Normally K is a diagonal anisotropic tensor where in 

xi‐1/2 xi+1/2

x 
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2D flow, K11 and K22 are different value to each other. In matrix form, K will be 

0
0  

Permeability will run as harmonic average when the flow passes through heterogeneous 

layer while it may run as arithmetic average when the flow runs in parallel layer. For the 

model described later, we simply model the flow runs as harmonic average. In 2D single 

flow-areal model, considering u=p - ρgh we write the equation as follow. 

 

        (2) 

 
The basic equation for the flow is also describing mass continuity. Adopted from mass 

conservation equation, we have: 

 

.         (3) 

 
We here will carry on deriving equations to approximate the pressure gradient of the 

flow, by combining equation (2) and equation (3). 

 

.        (4) 

 
Adopted from [1], conservation mass in equation (3) can also be generalised 

since  , where m is mass component in unit volume and    where Sl is 

saturation phase (later described in next sub chapter) and m is mass flux of phase l.  

 

.          (5) 

 

2.3. Discretising single flow in finite difference form 

 For single flow, the approximation will neglect the time variable, therefore from 

equation (4) we have some main variables like  ,   to be solved. In expanded 

term, we can re-write the variables as follows. 

1  

∆
 ;  

1  
∆

    1
∆

∆
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The illustration of finite difference approximation is as figured at figure below. 

It must be kept that in doing finite difference approximation; ∆x and ∆y are maintained 

constant.  

In this section, we carry on equation (4) to illustrate the flux flow. Let fluid 

mobility,  . We then develop a statement as follow. 

 

.           (6) 

 
From grid discretisation above, it defines  ∆ /  and ∆ /  that we will use for 

expanding equation (6) into 2D form. Since ∆x and ∆y are maintained constant, then we 

may assume ∆ /  = ∆ / . We let each grid block has mobility λi and the fluid 

flow through grid perimeter which has mobility λi±1/2. Taking from equation (6), while 

keeping ∆z = 1, we expand divergence and gradient operators form as follow; 

 

.   , , , ,  

,

Δ
,

Δ
,

Δ
,

Δ
 

, ,        (7) 

 
Mobility λ as mentioned previously will run as harmonic average. 

Δ
2

Δ
2

Δ
2  λ

Δ
2  λ

 

 

Figure 5. Block to block flow where the (i ± 1/2) and (j ± 1/2) subscripts refer 

to quantities at the boundaries.4  

                                                            
4 Source: [4] 
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The way to identify the block position in numerical simulation is by block 

ordering. A particular ordering scheme may work specifically for particular simulation. 

This report uses natural ordering which gives a sequence order for the whole blocks 

assuming the reservoir as a rectangular block. In our MATLAB® coding, after setting up 

K matrix, grid block number and source/sink point, we then set the transmissibility as 

harmonic average before we construct the transmissibility matrix and solve the pressure 

equation. While solving the matrix we also set the prescribed pressure at grid (1, 1) 

equals to zero by adding element (1, 1) excluding itself to all the values in the first row 

and first column of permeability matrix. 

In approximating the pressure with finite difference, the pressure in left hand 

side of the equation is pressure at n+1, and the pressure that we approximate in right 

hand side is pressure at n that in some points are assigned either as injectors or 

producers. We then carry on rearranging equation (6) above by grouping all unknown 

(pressure at n+1) to LHS and known terms to RHS. 

 

, ,

,  , , ,    (8) 

 
In 2D, each block has five non-zero terms that constructs a penta-diagonal 

transmissibility matrix. Since the known terms in left hand side are constant, we then 

simplify equation (8) into: 

 

. , . , . , . ,   

. , . ,        (9) 
 

Even though we do not model in 3D, likewise, we may expand expression in equation 

(9) in 3D as below. 

. , , . , , . , , . , ,

. , , . , ,

. , , . , ,  
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We then set boundary conditions for the whole inner blocks perimeter as flow 

boundary condition and outer blocks perimeter as no-flow boundary, therefore in 

perimeter along the reservoir ∂Ω, we set vw .n = 0, where n is normal vector pointing 

outward the boundary. Some points where we set as injector or producer wells as flow 

boundaries with pressure, therefore in the certain spots of reservoir ∂Ω, we set vw .n = q. 

Matrix q as sink/source point will be represented as 1 and -1. In 1D form, we simply set 

no flow boundary on top and bottom perimeter, sing point along the left perimeter and 

source point along the right perimeter. We then will end up with a simple matrix 

operation T * U = Q. 

For example, in simple form of a 4x3 grid block with natural ordering block, the 

equation will appear as a sparse diagonal matrix below. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. A natural 4 by 3 ordering block connectivity with its penta-diagonal 

non-zero transmissibility matrix. 

The transmissibility matrix will have the same size for a 3x4 grid block. For the 

same ordering block, the different will be the position of transmissibility in y-direction. 

It is essential to treat each reservoir block as a three-dimensional shape no 

matter we run the model in 1D, 2D, or 3D. Boundary conditions on each grid-blocks 

manage flow contribution the among the grid blocks. Specifically for this section, in 2D 

areal flow, two boundary conditions where we reckon as no flow boundary, do not 

contribute to flow. This explains the statement above why in 2D flow there are only four 

neighbouring blocks. 
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Figure 7. Flowchart for pressure solver.  

 

 

 

 

Start 

Reservoir properties: Grid 

blocks order; Δx,y; 

permeability K.  

Fluid properties: viscosity. 

1. Define transmissibility either with 

harmonic or arithmetic mean 

throughout grid blocks 

2. Develop sparse matrix for penta-

diagonal matrix T. 

3. Prescribed zero pressure at grid (1, 1) 

4. Set up sink and source locations as 

injector and producer wells. 

5. Define Pressure with solution in 

equation (9) 

6. Plot the pressure profile. 

7. Define velocity from the pressure 

matrix. 

 

Finish
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Figure 8. Pressure plot for 10 by 10 grid-blocks order in 1D. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Pressure plot for 10 by 10 grid-blocks order in 2D. 
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2.4 Applicability of mixed FEM for pressure solver. 
 

What we have presented above is a simple form of control volume finite element 

in 2D with finite difference approximation, where the space discretisation is kept 

constant. The method is useful to avoid complexity in the coupled system 

approximation. Some adaptive methods have been developed to account non-uniform 

grids in reservoir discretisation. Some papers and literatures are in detail discussing the 

application of mixed-FEM, such as [10], [11], and [12]. 

We will generally review the application of mixed-FEM. The method will 

approximate the flow as it transfers from one block to another through the grid edges. 

The transmissibility matrix will be bigger in size since it consists of edge 

transmissibilities associated with their length instead of block transmissibilities with 

constant length of space. This approximation allows the computation to have non-

uniform grids. In multi-phase flow application, the pressure solver using Mixed-FEM 

may simply replace the one with finite difference approximation we have discretised 

above. This is because the input and the output variables for this method are the same 

with finite difference approximation. 

 

2.4.1 Governing equations 

The governing equation is taken from re-writing equation (2) and (6) with mixed-

FEM. Defining Sobolev space, for Ω , Ω  and . Ω . 

 
.       Ω (Reservoir)     (10) 

          (11) 

This method separates equation (11) where v is adopted from mass conservation law 

. . The method is so called mixed method because the solution, instead of 

solving pressure and then sequentially using it to obtain velocity, it solves equation (11) 

and mass conservation equation for pressure and velocity at the same time. With no 

flow boundary condition and letting n is normal direction, it is set that . n =0 at 

Ω. Let w is a test function, we then multiply equation (11) with w and integrate it 

by part to obtain: 

   .  
Ω

.  
Ω

Ω

                                                                   12  
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The method again sets another test function l and integrates over Ω, to have: 

 .    
ΩΩ

                                                                                                 13  

Under simple control volume with finite difference approximation, p and l are set into 

piecewise constant. In matrix formational equation, we re-write equation (12) and (13) 

as follow. 

0

g
 

 
In the matrix solution, [B] is the first term of left hand side in equation (12) 

consisting transmissibility over base function and [C] in the second term of left hand 

side of equation (12) stands for pressure over the base function. In the right hand side of 

matrix, we consider [g] is the right hand side expression of equation (12), for 2D areal 

model neglecting gravity the value will be zero. The location of sink/source is finally 

represented by matrix [f] whose values are 1 for producer, -1 for injector and zero for 

the rest, represents the right hand side of equation (13). Unknown [p] is the pressure 

matrix.  

In 2D Raviart-Thomas element discretisation, the grid can be either rectangular or 

triangular. Under this approximation, we may come up with edge-based FEM. It is out 

of our scope to discuss more on mixed-FEM, however more details of mixed-FEM is 

discussed by Wriggers and Carstensen in [12].  
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 Two-Phase Flow 

 

 

3. Two-Phase Flow 

3.1 Relative Permeability 

Under two-phase flow condition, there would be displacing fluid and displaced 

fluid. It can be explained as one phase of fluid flow disturbs the existence of another 

fluid behavior.5 In multi phase condition, we define , where Keff is fluid 

phase permeability. Later we will describe with a water-flooding illustration that under 

multi-phase condition, relative permeability is a function of saturation. 

Our single-phase flow is weighted in harmonic means. Under multi phase flow, 

which involves two different phases, it cannot simply use the same averaging. As an 

illustration, we have two sequent blocks for two fluid phases (oil and water). In block i 

is at Sw, say only water can flow that means krw > 0 and kro = 0. Likewise for block 

i+1, say only oil can flow with krw = 0 and kro > 0. Physically we explain how water is 

the only fluid to be allowed to flow from block i to block i+1. We can say that equation 

(8) with harmonic average, at i+1 for krw = 0 results in zero division which means it 

does not allow both water and oil to flow. Another averaging, that is arithmetic average 

as described below allows both water and oil to flow, which is incorrect according to the 

explanation above.  

/

Δ
2  λ   

Δ
2  λ  

Δ
2   

Δ
2

 

A simple illustration of linear water-flooding is likely figured below. Each 

subfigure represents a time step, Δt, of the water injection process. An injector is 

located at block 1 is injecting water at constant rate Vw and a producing well is assigned 

at the 5th block. The system is initially set at saturation Swc with no flow due to zero 

relative permeability of water (krw(Swc) = 0) at this particular stage. Each block has 

pore volume Vp= Δx.A. , where  is the cell porosity. At first time step, certain 

                                                            
5 Source: [2] 

3
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volume of water is injected into block 1 as much as Vw.Δt that would increase water 

saturation in block 1 into Swc=Swc+(Vw.Δt)/Vp. At this stage, no flow condition due to 

zero permeability is still maintained. The second time step, from injector at the first 

step, we keep injecting the same volume of water causing more increase in water 

saturation at block 1, since water saturation has changed, krw(Sw1) > 0, the new 

injected water will push the existing water inside the grid to flow from block 1 to block 

2. Over the second stage, the flowing water from block 1 to block 2 will repeat the first 

condition which would increase water saturation at block 2 and if some more water at 

the next time step is injected, the condition would let water flow from block 2 to block 

3, krw(Sw2) > 0. During this stage, the outlet is producing oil continuously. The same 

sequence occurs at the next time step then water will reach the last block with less rate 

of volume due to small relative permeability of water. Hence, for the time step, we 

notice that minimum number required is clearly associated with grid block number. 

Later explanation with Buckley-Leverett equation, we will describe this grid-based 

numerical dispersion may lead to numerical error approximation. 

 

Figure 10. Numerical Dispersion illustration 
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Figure 11. Relative permeability. 6 

 

Figure 12. Water Saturation. These sample maps in sequence show the interval 

of 1.5 and 9 years in a reservoir model with two injectors.7 

 
Mobility ratio in multi phase condition, based on the illustration above, can be 

defined as the ratio of the mobility of injected fluid behind the fluid front over mobility 

of another fluid. The first fluid in our model is water that is displacing the second one 

that is oil. 

 

3.2. Equations for two-phase flow 

There are basically two conceptual models for multi phase flow. The first one is 

two-phase model of two immiscible fluids. This model assumes that the phases are fully 

immiscible which means the soluble effect is neglected. The second model assumes that 

                                                            
6 Source: [3] 
7 Source: [11] 
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each phase consists of two components and generally known as multi component flow. 

This presentation will focus on the first concept, which is two immiscible phases for 

water as displacing fluid and oil as displaced fluid. In many literatures, the phases in 

two-phase immiscible flow scheme are distinguished as wetting phase, which is 

normally water phase and non-wetting phase, which is the oil phase. 

Taking statements from equation (2), (3), (4) and (5), the pressure equations for 

each phase are described below. 

 

.   ; for oil    (14) 

 

.   ; for water    (15) 

 
        (16) 
 

Where λT  is the total mobility. Other descriptions come along with the equations above 

are So+Sw = 1 and po = pc – pw, where pc is capillary pressure. Equation (14), (15), 

(16) are rewriting the two-phase flow equation into  

 

.         (17) 

 
For solving non-linearities in equation (17), we, first of all, define Darcy’s phase 

velocity for each phase which is the basic equation to solve pressure solver. Taking 

from equation (1), we then define water velocity and oil velocity in full formational 

equation below. 

  
       (18) 

 
       (19) 

 
To be noted, the gravity variable in the equations will further be neglected as we focus 

on areal model. Where total velocity Vt = Vw + Vo, taking from equation (18) and (19), 

we have: 

 
     

  
             (20) 

 
To simplify the equation above, we let  and  Λ . 
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Substituting the assumptions into equation (20) then we have: 

 

 λ  Λ   )     (21) 
 
To ease the model, we focus on water component with oil component as dependant. We 

then swap the expression consists of water pressure into right hand side as below. 

 

 Λ   )     (22) 

 
From equation (22), we than may define water velocity by substituting the right hand 

side term into water velocity equation. 

 

Λ      (23) 

 
Under two-phase flow condition, we have fractional flow as the ratio of fluid production 

rate over total production rate. Fractional flow according to the definition above shall be 

a value between 0 and 1. In the absence of gravity, in oil-water system, fractional flow 

for water taken from equation (18) and (19) can be denoted as  

 

          (24) 

 
We now substitute water velocity in equation (23) with fractional flow terms and 
expand the term  Λ into oil and water component. 
 

      (25) 
 
Continuity equation in equation (5) above in this case is used to express velocity 

equation with saturation variable. Eliminating mass rates ρ in both sides of equation (5), 

we have: 

 

           (26) 

 
We then insert equation (24) into equation (25). 

 

     (27) 

 
Here we notice that pressure solver in equation (25) and updated saturation in equation 

(27) both are connected with variable of fractional flow through relative permeability.  
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The contact angle θ, which appears when a fluid interface intersects with a solid 

surface, is an important parameter to define the wetting phase and non-wetting phase.8 

To avoid excessive numerical analysis due to dissolved effect of fluid, we choose θ = 0 

for our scheme.  

In this case, both equation (25) and (27) can be solved in sequence with a method called 

IMPES (Implicit Pressure, Explicit Saturation). This method will firstly solve pressure 

equation implicitly and then will solve saturation explicitly through velocity equation, 

which is previously derived from pressure solver. Under IMPES method, we notice that 

in equation (25) and (27), pressure of displaced fluid (oil pressure) and displacing fluid 

saturation (water saturation) are the primary unknowns we are solving. Some main 

variables like permeability and transmissibility in multi-phase flow are functions of 

these variables. Under IMPES, we define equation (27) in 2D areal flow as follows. 

 

.          (28) 

       (29) 

 
a and b here represent wave speed which is the maximum absolute value of velocity. 

  

max / ,
,

Δ
 

max , /
,

Δ
 

This implies on requiring time step restriction known as CFL (Courant-

Friedrichs-Levy) condition. With grid ∆x, CFL number is given by: 

 
| | ,  ∆

∆
         (30) 

 
where vmax is the absolute maximum velocity within an element. To avoid the 

information extends one grid size per time step, the number is set as CFL < 1. 

  

3.3. Discretising two-phase flow equations 

As mentioned above, under two-phase flow there are two main solvers to be 

approximated. For pressure solver, we use the same equation with the one in single flow 
                                                            
8 Source: [7] 
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scheme. The different is only that the permeability variable in two-phase flow is relative 

permeability , which is a function of saturation derived from fractional flow. 

Modified from equation (8), under the system of two-phase flow, the equation for 

pressure solver for water phase is given below. 

 

,

, ,

,

, ,  

,

,

Δ
,

Δ ,

,

Δ
,

Δ
 

, ,         (31) 
 

From fractional flow term in equation (24), we have  . We 

may expand the equation into 
   . The water flooding illustration 

above mentions that both Krw(Sw) and Kro(So) are functions of saturation which are 

updated through time step along with constant injection at sink point. The relative 

permeability for each phase in functional form, adopted from Aziz and Settari (1979) 

[1], is given below. 

 

;  1     (32) 

;  1     (33) 

 
Here, Sor and Swr are residual saturation for oil and water phase. For simplicity 

in MATLAB® coding based on relative permeability graphic shown in figure (6), that 

permeability is optionally considered as quadratic functions of saturation. We then 

define mobility of fluid as follow.  

;  ;         (34 a. 34 b. 34 c) 

Assuming there is no trapped oil and water, then adopted from [3], Sor and Swr = 0. 

 From equation (27), in the right hand side,  is the matrix of injected inlets and 

outlets. Therefore, it is 1 for outlets and -1 for inlets. In MATLAB®, we will have one 
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column matrix with one value of the elements represents an inlet or an outlet while the 

rest values are zero. The matrix defines the position of inlets and outlets within the grid-

blocks. This allows the coding to automatically switch the matrix as the positions of 

source and sink change. In formational equation, the saturation solver is defined as 

follow. 

 
∆ ∑                     (35) 

Where in formational equation, vij is denoted below. 

,
 

Δ
Δ

  

,
 

Δ
Δ /

  

 ,
 

Δ
Δ

   

 ,
        (36) 

 
As a re-check, it can be seen in equation (35) that when Δx→0 and Δt→0, the equation 

will reduce to continuity equation. In the equation, f(S) is fractional flow, vij is velocity 

matrix that represents cell volume transmissibility and qmax and qmin represent positive 

and negative parts of the element inside velocity matrix. Matrix vij in MATLAB® will 

be either a non-zero upper or a non-zero lower matrix, depends on the location of sink 

and source in matrix q. For the solver we also set the updated saturation to follow 

statements in equation (32) and equation (33) to be:  

 

1         (37) 
 

In this case, equation (34 a – c) will be used twice. First, it will be the input to 

define relative permeability for solving the pressure. Second, the relative permeability 

values are also the input of fractional flow, which is the updating value in the right hand 

side of equation (35).  

Here, with some matrix manipulation in MATLAB®, the fractional flow 

command contains saturation variable that is updated based on equation (36) within the 
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time step iteration. Typically, for oil-water system, the plot of fractional flow for water 

phase is as figured below. 

 

Figure 13. Fractional flow without gravity.9 
 
In the right hand side of equation (35), as it is previously mentioned, Δt takes 

important part under IMPES method. The updating value for saturation Sn+1 and 

stabilization of the loop calculation mainly depend on it. Details on its discretisation are 

available in [1]. From CFL condition in equation (30), we can derive in 2D that: 

 

∆
 

 | |

∆ ∆
1        (38) 

 
While Δt is between 0 and 1, CFL here has a function of breaking the iteration at Δt 

th 

while it keeps allowing the computation running for the next injection loop. The 

saturation matrix as the result is a square matrix. The value of each element is changing 

during the loop. The changing represents the changing of saturation itself due to 

constant influx.  

  

                                                            
9 Source: [3] 
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Figure 14. Flowchart of two-phase immiscible flow. 

 

Start 

[Grids], [kabs],[ , , , 

Swc, Sor  

Pressure Solver 

Input: [K ]= [kr]. [kabs];  

Solve pressure with equation (9). 

Output: 

[Pressure] and [velocity].  

Finish 

Initial Saturation:  [Sw] = 0 

 

Relative permeability function: 
 
Statements in Eq. (34.a); (34.b); (34.c) 

 Barriers in [kabs] 

 Transmissibility: 
1. Harmonic 
2. Arithmetic 

Saturation Solver 

Input: [velocity]; [ ; grids. 

 

 

 

 

 

 

 

                    Loop at Δt                  

 

Output: [Sw] at t = nth Δt                Plot profiles. 

 

Develop velocity function with wave speed from eq. (36)  

Define CFL condition. 

Define Δt from CFL and wave speed in eq. (29) & (38). 

Develop updating value ([RHS of eq. (35)]) 

Define flux increment per Δt 

Updating Saturation 

with Equation (35)  

Fractional flow of water: 
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Figure 15. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a 1D square 25 

grid-blocks. 
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Figure 16. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a 2D square 25 

grid-blocks. 
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3.4 Buckley-Leverett Equation 
 
From the last description, we have defined the time when the breakthrough time 

occurs. We now will define the position of fluid front at time Δtth. For this definition, 

Buckley-Leverett (1942) have in detail, discussed the descriptions in their paper. Taking 

from continuity equation in equation (5), we let ρ is constant and eliminated from both 

sides. v equals to phase fluid fractional volume f(S)v. In water formational equation, we 

denote as follows. We also let v in 1D form as total flux qt 

 
 

           (39) 

 

Fractional flow is normally a function of saturation in time Δt instead of a function of 

space Δx. To account with that, we have saturation variable as a function of space and 

time S(x, t). Connecting the two conditions, we re-write equation (39) as follow. 

 
 

                                                                                                    40  

         
For saturation change dSw equals to zero during the displacement process, we denote 

the expression S(x, t) below. 

 

0        (41) 

 
The front location in time is derived from substituting expressions in equation (41) into 

equation (40). In this case the equation is denoted below. 

 

 
          (42) 
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3.5 Truncation Error  
 

The approximation we are using is a finite numerical step approximation. The 

approximation inevitably leads us to some error. This error will still exist even if we use 

a better precision in our approximation. The error is explicable with Taylor series.  

Using Taylor series method, let us consider constant time t + Δt in 1D space 

derivative. The pressure function is expanded as follows. 

 
∆ , ∆

, ∆ ∆  , ∆
∆
2!

, ∆

∆
3!

, ∆                                                                43  

 
    ∆ , ∆

, ∆ ∆ , ∆
∆
2!

, ∆

∆
3!

, ∆                                                            44  

 
We then add the two equations and solve the second derivative as follow. 

 

, ∆

∆ , ∆ 2 , ∆ ∆ , ∆
∆

∆
12

, ∆                                                              45  

 
Under grid system, we can rewrite the equation into: 

 

         
∆ ∆ 2 ∆ ∆

∆
. .                                                46  

       
. .  ~    

 
 Under constant x, we can then define the error in 1D time derivative using the 

same Taylor series method. From saturation solver, we have: 
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, ∆ , 0                                       47  

  
In Taylor series, we can write the first and second term of the equation into:  

 
, ∆ ,

∆
,

∆
2

,
∆
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,              48  

 
, ∆ ,

∆
,

∆
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,
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,            49   

 
Adding the two equations, we have the truncation error from eliminating the first 

derivatives in both equations as follow. 

 
1
2

∆  ∆ . .                                                                                      50  

 
Here we notice that the truncation error based on space is second order derivation while 

the error in time derivation is first order expression. 

For  0, we may also write it into second derivative as follow. 

                                                                                                                      51  

 
Substituting the term in equation (51) into equation (50), we obtain an equation below.  
 

∆   ∆
2

                                                                                              52  

 
 ∆
2

 ∆
∆

1                                                                                             53  

 

Let 
 ∆

∆
 which represents CFL number. In full formational form, combining the 

expression in equation (53) into  0 , we obtain an equation below.  

 ∆
2

1  ∆                                                                     54  

 
We also notice that the coefficient term in the right hand side represents CFL restriction. 

The equation explains why CFL is set less than or equal to one. 
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3.6 Barriers in permeability matrix. 

We also present other attempts in varying the permeability matrix. Our next 

attempt is to set square flow barrier in the middle of the reservoir. The second attempt is 

to set two symmetric rectangular flow barriers. Both of them are figured below. 

 

 

 

 

 

 

 
Figure 17. Variational models with flow barriers. (a). square barrier in 

the middle. (b). symmetrical rectangular barriers in the corner. 

To account the first attempt, in MATLAB, we set the barrier for 10 by 10 grid blocks 

reservoir as follow. 

 
k(i, j) = 1, 

 [(4≤  i ≤ 7) and (4≤  j ≤ 7)] → k = 0.001 
 
From this attempt, we expect the flow to avoid the barrier in the middle. We also 

present the saturation profile with the existence of this type of barrier. Similar to the 

first attempt, the second attempt for 10 by 10 grid blocks barrier conditions in 

MATLAB will be denoted below. 

 
k(i, j) = 1, 

[(i = 6) and j < 5 ] → k = 0.001 

 [(j = 6) and i < 5 ] → k = 0.001 

 
For the second attempt, in particularly, we will also try to set the transmissibility 

as arithmetic means to compare with the one with harmonic means.  

To approach heterogenic physical condition of reservoir, we also set an attempt 

where permeability matrix exists as random number between 0 and 1000. Below, we 

also present flow profiles for 17 by 17-2D grid-block with random value permeability 

and rectangular barriers. We expect to visualize reservoir as mixed of rock and sand 

with different permeability. The graphical outputs also show clearly of trapped oil. 
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Some spots in the reservoir are not completely swept out by the water flooding. This 

matter leads to reservoir management to establish the best location arrangement of inlets 

and outlets in order to maximize the oil production.  

 
3.7 Discussion 

Outputs in figure 15 show that in homogenous 2D areal model, during first 

injection, water will reach the last grid block at 0.6 < CFL < 0.7. This condition known 

as breakthrough, in which injected water has fulfilled approximately 0.6 - 0.7 part of 

pore volume of the reservoir.   

With normal harmonic mean (figure 19), we can figure that the flow with this 

type of barrier would not flow through the barrier. This leads to the decrease of 

breakthrough time. The breakthrough time reduces as the arrangement of the barriers 

prevents the flow to flood the whole block and drives it to the outlet more quickly. 

However, with arithmetic mean (figure 20), we notice that the flow pass through the 

barrier which actually means a wrong approximation. The arithmetic average 

transmissibility allows the flow to pass through the boundary in a parallel way. This 

explains why the flow profile under arithmetic average with 2nd type of barrier is similar 

to the flow under homogenous grids without barrier.  

In 1D homogenous system, the piston-like movement of water-oil displacement 

is more obvious. The figures for the movement against time are as figured in figure 15. 

This happens due to immiscible system that does not consider solubility. The neglecting 

of solubility is a result from previous empirical observations. In the figure, we can also 

notice that the pushing movement leads to straight line in outflow profiles. This means 

that before breakthrough occurs, the outlet is producing oil that is free from water.  

In 2D fractional flow graphic profile, we notice that when the iteration is closing 

to breakthrough time (finger-like profile saturation) or when oil saturation increases 

rapidly, the graphic line is shifting on right movement. In some literatures ([8] and [9]), 

the condition means as efficient displacement when mobility ratio is very low or when 

oil viscosity is very low. The effect of mobility ratio is one factor in enhanced oil 

recovery (EOR). A glance review, according to the literatures, the primary recovery is 

carried out by existing natural pressure inside reservoir as an effect of the existence of 

trapped fluid inside reservoir. To maintain the pressure level, water or gas is injected. 

The quarter five spot water-oil system that we model is the secondary recovery.  
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 The logic of lowering mobility ratio is that we try to optimize the oil production 

with efficient water-flooding process. If mobility ratio is too high, it means water 

mobility is higher than that of the oil. When water mobility is high, water viscosity is 

low and water tends to run avoiding oil. This condition will create a fingering profile of 

water through oil instead of pushing the oil constantly as piston-like movement. 

Mobility ratio matters more when we deal with random heterogenic reservoir. Further 

details on enhanced oil recovery process and the involved factors are available in [8] 

and [9]. 

 As a comparison for our result in this thesis, in the end of our first section above, 

we present a review of the applicability of mixed-FEM for pressure solver. The 

approximation is based on standard mixed finite element where it solves pressure and 

velocity in one-step solution. Other results for two-phase flow using higher order finite 

element based on IMPES are presented in [13] and [14]. Both papers discuss higher-

order finite element implementation for convective flux approximation in more detail. 

The implementation is presented into comparison manner between CVFE and control 

volume distributed (CVD) for approximating the flux in two-phase flow on unstructured 

grids for water-oil system in 2D simulation ([13]) and 3D simulation ([14]). A glance 

review, the papers emphasize the benefit of control volume distributed to improve fluid 

front resolution on unstructured grids both in 2D and 3D two-phase flow. 

We also notice error due to the approximation based on grid-block. A simple 

numerical dispersion illustration in figure 10 shows basic error of the approximation. 

From the illustration, we can simply guess that water will reach the last block when the 

iteration number equals to the number of the grid with less rate due to the permeability. 

The more the number of grid, the longer water reaches the last block. Based on 

Buckley-Leverett equations, we can define the fluid front position, which we cannot 

achieve in our model due to grid block system with Δx. In other words, our grid model 

converts x-location into grid-block position. This error, indeed, will be reduced when 

we apply finer grid for the same length to approach the real condition. As we mentioned 

above, some simplicities are applied in generating our model. Simplicities that may 

apply in a real approximation for reservoir appraisal in the early stage, also contribute 

error in the approximation. However, this type of error will be improved gradually 

while recovery process is running. 
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Figure 18. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a square 10 grid-

blocks with barrier type 1. 
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Figure 19. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a square 10 grid-

blocks with barrier type 2 running with harmonic mean. 
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Figure 20. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a square 10 grid-

blocks with barrier type 2 running with arithmetic mean. 
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Figure 21. Profiles of pressure, fractional flow, saturation at different time 

steps, Sw at outlet and Fo (oil fractional flow) at outlet for a square 17 grid-

blocks with random permeability and rectangular barriers. 
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Appendix A 

 

Appendix A 
Single flow MATLAB® coding: 

clear all; clc 
nblox=14; nbloy=14; 
ngrid=nblox*nbloy; 
k=ones(nblox,nbloy);mu=1;L=k./mu; 
dx=1/nbloy.*ones(nblox,nbloy-1);dy=1/nblox.*ones(nblox-1,nbloy); 
tx=.5*dx./k(:,1:nbloy-1);txi=.5*dx./k(:,2:nbloy); 
ty=.5*dy./k(1:nblox-1,:);tyi=.5*dy./k(2:nblox,:); 
Tx=dx./(tx+txi);Tx=(dy(1)./dx(1)).*Tx; 
Ty=dy./(ty+tyi);Ty=(dx(1)./dy(1)).*Ty;Ty(nblox,:)=0; 
T=sparse(1:ngrid-1,2:ngrid,Ty(1:ngrid-1),ngrid,ngrid); 
T=-T-sparse(2:ngrid,1:ngrid-1,Ty(1:ngrid-1),ngrid,ngrid); 
T=T-sparse(1:ngrid-nblox,nblox+1:ngrid,Tx,ngrid,ngrid); 
T=T-sparse(nblox+1:ngrid,1:ngrid-nblox,Tx,ngrid,ngrid); 
diagT=spdiags(T); diagv=(abs(sum(diagT,2))); 
A=T+sparse(1:ngrid,1:ngrid,diagv,ngrid,ngrid); 
A(1,1)=A(1,1)+sum(k(:,1))+sum(k(1,:));  % prescribing pressure (1,1) = 0 
 Q([1 ngrid])=[-1 1];     % for 2D system 
% Q(1:nblox)=1;Q(ngrid-nblox+1:ngrid)=-1;   % for 1D system 
u=A^-1*Q'; 
p=reshape(u,nblox,nbloy); 
tri=Ty(1:nblox-1,:); 
trj=Tx(:,1:nbloy-1); 
Vx=(p(1:nblox-1,:)-p(2:nblox,:)).*tri; 
Vy=(p(:,1:nbloy-1)-p(:,2:nbloy)).*trj; 
subplot(2,2,1);contourf(p),colorbar;grid on,title('Pressure'); 
[x,y]=meshgrid(1:nblox,1:nbloy); 
[xa,xb]=gradient(p,.2,.2); 
[za,zb]=meshgrid(1:nblox,1:nbloy); 
subplot(2,2,2),streamline(x,y,xa,xb,za,zb);grid on,title('Streamline flow'); 
subplot(2,2,3),surf(p),colorbar; 
subplot(2,2,4),quiver(x,y,xa,xb); 
 

A1 
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Appendix B 

 

Appendix B 
Two-Phase Flow MATLAB® coding 

 
clear all; clc;clf; 
nblox=10; nbloy=10; 
ngrid=nblox*nbloy; 
%  options for permeability 
k=ones(nblox,nbloy);    %  uniform permeability 
% k(4:7,4:7)=.00001;    %  perm. with square barrier 
% k(1:4,6)=.00001;k(6,1:4)=.00001;  %  perm. with symmetric rect. barriers 
% k=randi([0,1000],nblox,nbloy);  %  random permeability 
L=k; 
trans=1;      % 1 --> harmonic; 2 --> arithmetic 
dx=1/nbloy.*ones(nblox,nbloy-1);dy=1/nblox.*ones(nblox-1,nbloy); 
por=ones(nblox,nbloy);  
system=2;       % 1 --> 1D; 2 --> 2D 
disp([num2str(system),'D system']); 
if system==1; 
    Q(1:nblox)=1;Q(ngrid-nblox+1:ngrid)=-1; 
else 
    if system==2; 
    Q([1 ngrid])=[1 -1];end; 
end 
muw=1; muo=1;  
swc=0; sor=0;  
S=zeros(ngrid,1);  
CFL=0.7;      %  0 – 1 (for single flooding) 
[p,Vx,Vy]=Pressure(nblox,nbloy,ngrid,L,dx,dy,trans,S,muw,muo,swc,sor,Q); 
sat(nblox,nbloy,ngrid,por,Vx,Vy,muw,muo,swc,sor,Q,S,CFL); 
subplot(2,3,1),contourf(p),title('Pressure'),axis square;colorbar; 
subplot(2,3,2),contourf(k),title('Permeability'),axis square; colorbar; 
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Relative Permeability Function 

function [Lw,Lo,Fw]=relperm(S,muw,muo,swc,sor) 
S = (S-swc)/(1-swc-sor);  
Lw = S.^2/muw;   % Water mobility 
Lo =(1-S).^2/muo;   % Oil mobility 
Fw=Lw./(Lw+Lo);   % water fractional flow 
 
 

Pressure Solver  

function [p,Vx,Vy]=Pressure(nblox,nbloy,ngrid,L,dx,dy,... 
    trans,S,muw,muo,swc,sor,Q) 
[Lw,Lo]=relperm(S,muw,muo,swc,sor); 
Lt=Lw+Lo;Lt=reshape(Lt,nblox,nbloy);Lt=Lt.*L; 
if trans==1 
% harmonic mean 
tx=.5*dx./Lt(:,1:nbloy-1);txi=.5*dx./Lt(:,2:nbloy); 
ty=.5*dy./Lt(1:nblox-1,:);tyi=.5*dy./Lt(2:nblox,:); 
Tx=dx./(tx+txi);Tx=(dy(1)./dx(1)).*Tx; 
Ty=dy./(ty+tyi);Ty=(dx(1)./dy(1)).*Ty;Ty(nblox,:)=0; 
else 
    if trans==2 
% arithmetic mean 
tx=.5*dx.*Lt(:,1:nbloy-1);txi=.5*dx.*Lt(:,2:nbloy); 
ty=.5*dy.*Lt(1:nblox-1,:);tyi=.5*dy.*Lt(2:nblox,:); 
Tx=(tx+txi)./(2*dx);Tx=(dy(1)./dx(1)).*Tx; 
Ty=(ty+tyi)./(2*dy);Ty=(dx(1)./dy(1)).*Ty;Ty(nblox,:)=0; 
    end 
end 
T=sparse(1:ngrid-1,2:ngrid,Ty(1:ngrid-1),ngrid,ngrid); 
T=-T-sparse(2:ngrid,1:ngrid-1,Ty(1:ngrid-1),ngrid,ngrid); 
T=T-sparse(1:ngrid-nblox,nblox+1:ngrid,Tx,ngrid,ngrid); 
T=T-sparse(nblox+1:ngrid,1:ngrid-nblox,Tx,ngrid,ngrid); 
diagT=spdiags(T); diagv=(abs(sum(diagT,2))); 
A=T+sparse(1:ngrid,1:ngrid,diagv,ngrid,ngrid); 
A(1,1)=A(1,1)+sum(Lt(:,1))+sum(Lt(1,:)); 
u=A^-1*Q'; 
p=reshape(u,nblox,nbloy); 
tri=Ty(1:nblox-1,:); 
trj=Tx(:,1:nbloy-1); 
Vx=(p(1:nblox-1,:)-p(2:nblox,:)).*tri; 
Vy=(p(:,1:nbloy-1)-p(:,2:nbloy)).*trj; 
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Saturation Solver 

function sat(nblox,nbloy,ngrid,por,Vx,Vy,muw,muo,swc,sor,Q,S,CFL) 
%  Storing positive and negative velocity into matrix 
maxvx(2:nbloy,:)=max(Vx,0); 
maxvy(:,2:nblox)=max(Vy,0); 
minvx=min(Vx,0); minvx(nblox,:)=0; 
minvy=min(Vy,0); minvy(:,nbloy)=0; 
vt=maxvx-minvx+maxvy-minvy; vt=reshape(vt,ngrid,1); 
qmax=max(Q,0); qmin=min(Q,0); 
volc=1/ngrid; porv=volc.*por; 
porv=reshape(porv,ngrid,1);     % pore volume 
ws=min(porv./(vt(:)+qmax')); hws=ws/2;   % wave speed 
dt=ceil(CFL/hws);      % 2nd R.H.S of the equation 
inc=(CFL./dt)./porv;      % updating value per injection 
v=abs(sparse(1:ngrid-1,2:ngrid,minvx(1:ngrid-1),ngrid,ngrid)); 
v=abs(v-sparse(2:ngrid,1:ngrid-1,maxvx(2:ngrid),ngrid,ngrid)); 
v=abs(v-sparse(1:ngrid-nblox,nblox+1:ngrid,minvy(1:ngrid-nblox),ngrid,ngrid)); 
v=abs(v-sparse(nblox+1:ngrid,1:ngrid-nblox,maxvy(nbloy+1:ngrid),ngrid,ngrid)); 
diagvt=spdiags(v); diagv=-abs(sum(diagvt,2)+qmin'); 
Av=v+sparse(1:ngrid,1:ngrid,diagv,ngrid,ngrid);  
Av=spdiags(inc,0,ngrid,ngrid)*Av;    % right hand side updating value 
q=qmax'.*inc;       % influx updating value 
for i=1:dt 
    disp(['dt: ',num2str(i)]); 
    [Lo,Lw,Fw]=relperm(S,muw,muo,swc,sor); 
    if(max(Fw)>1),break;end 
    S=S+(Av*Fw+q);      % updating saturation 
    if(max(S)>1),break;end 
    sx=reshape(S,nblox,nbloy); 
    fwi(i)=Fw(ngrid); si(i)=S(ngrid); 
    subplot(2,3,3),plot(S,Lo+Lw),title('Relative Permeability'),... 
        xlabel('Sw'),ylabel('Kr'),axis square;drawnow 
    subplot(2,3,4),plot(S,Fw),title('fractional flow'),... 
        xlabel('Sw'),ylabel('Fw'),axis square;drawnow 
    subplot(2,3,5),ax=linspace(0,i,i);plot(ax,1-fwi,'r',ax,fwi,'-.b'),... 
        title(['Outflow @ dt= ', num2str(i)]),xlabel('dt'),... 
        ylabel('F(S)'),ylim([-0.05 1.05]),axis square;... 
        legend('Fo','Fw',3);drawnow 
    subplot(2,3,6),contourf(sx);title(['Saturation @ ',... 
        num2str(CFL),' dt']),axis square;caxis([0 1]),colorbar,drawnow; 
end 
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