Dr. Budiyanto, ST. MT

MODUL PELATIHAN OGRAMABLE LOGIC CONTROL

LABORATORIUM TEKNIK ELEKTRO

MODUL PELATHIAN

PROGRAMABLE LOGIC CONTROL

PENULIS

.

1

÷

1

Dr. Ir. Budiyanto, MT

Desain :

Wahyu Ibrahim, ST

Editor :

Erik Fajar, ST, MM

Penerbit

UMJ Press

JI, JI, KH, Ahmad Dahlan, Ciputat, Circundeu, Ciputat Timur, Circundeu, Jakarta Selatan, Banten 15419

KATA PENGANTAR

Modul Pelatihan ini dimaksudkan sebagai bahan Pengenalan Pemogramable Logic Control (PLC), Modul Pelatihan ini dinancang berdasarkan pengalaman mengajar di Fakultas Teknik Universitas Muhammadiyah Jakarta, dimana mahasiswa yang telah mengambil mata kuliah Pengaturan Penggunaan Motor Listrik (PPML) diperluas pengetahuan dengan mengikuti pelatihan Programable Logic Control (PLC). Modul ini dapat juga digunakan oleh kalangan umum, praktisi, dan engineering. Modul ini dirancang berdasarkan Instruksi – Instruksi yang ada pada PLC Samsung SPC 1205 BRAIN

Pada kesempatan ini penulis mengucapkan banyak terima kasih pada semua pihak yang telah membantu schingga terselesaikan modul Programuble Logic Control

ţ

Penulis

KATA PENGANTAR

Modul Pelatihan ini dimaksudkan sebagai bahan Pengenalan Pemogramable Logic Control (PLC). Modul Pelatihan ini dirancang berdasarkan pengalaman mengajar di Fakultas Teknik Universitas Muhammadiyah Jakarta, dimana mahasiswa yang telah mengambil mata kuliah Pengaturan P rggunaan Motor Listrik (PPML) diperluas pengetahuan dengan mengikuti pelatihan Programable Logic Control (PLC). Modul ini dapat juga digunakan oleh kalangan umum, praktisi, dan engineering. Modul ini dirancang berdasarkan Instruksi – Instruksi yang ada pada PLC Samsung SPC 120S BRAIN

Pada kesempatan ini penulis mengucapkan banyak terima kasih pada semua pihak yang telah membantu sehingga terselesaikan modul *Programable Logic Control* (PLC)

e- 1

.

Penulis

-

KATA PENGANTAR	i
DAFTAR ISI	, ii
DAFTAR GAMBAR	iii
DAFTAR TABEL	iii
MODUL I PENGENALAN PLC SAMSUNG	1
1.1 GENERAL INFORMATION PLC SAMSUNG	1
1.2 KEUNGGULAN PLC DIBIDANG DENGAN PANEL KONVENSIONAL	2
a. PANEL KONVENSIONAL	4
b. SYSTEM PLC	4
1.2.1 KEUNTUNGAN MENGGUNAKAN PLC	4
1.3 SISTEMATIKA MENDESAIN SUATU SISTEM DENGAN PLC	5
1.4 KONFIGURASI SEBUAH PLC	6
1.4.1 HAL PENTING YANG PERLU DHINGAT DALAM PLC	7
1.5 PENGAWATAN (WIRING) PADA TERMINAL INPUT / OUTPUT	12
1.5.1 PENGAWATAN MODUL INPUT	13
1.5.2 PENGAWATAN MODUL OUTPUT	13
1.5 PENGOPERASIAN HANDLELD PROGRAMING CONSULE	14
BAB II INSTRUKSI - INSTRUKSI DASAR PLC	16
2.1 INSTRUKSI – INSTRUKSI DASAR PLĆ	16
1. STR	16
2. STR NOT	16
3. AND	17
4. AND NOT	17
5. OR	17
6. OR NOT	18

 $b=\frac{1}{2}$

۰.,۱

-1

DAFTAR ISI

50 3451

3

7. SET DAN RESET	18
8. SET OUT	19
9. MCS (MASTER CONTROL SET) DAN MCR (MASTER CONTROL	53
RESET)	, 20
LO. TIM (TIMER)	20
11. CNT (COUNTER)	21
12. SR (SHIFT REGISTER)	21
BAB III APLIKASI INSTRUKSI DASAR DALAM RANGKAIAN	23
3.1 RANGKAIAN SERI DAN PARALEL	25
3.2 COMPLEX DAN BRIDGE CIRCUITS	27
3.3 NON VOLATILE DAN OUTPUT SHU - OFF CIRCUITS	29
3.4 TIMER DAN COUNTERS CIRCUITS	30
3.5 ONE SHOT	32
3.6 REPEAT OPERATION AND FLIP FLOP CIRCUITS	34
3.7 ON - OFF DELAY AND SCAN TIME MEASUREMENT CIRCUITS	36
3.8 DASAR PEMOGRAMAN PLC	
1. KOMBINASI AND BEFORE OR	38
2. KOMBINASI AND BEFORE OR	38
BAB IV PEMOGRAMAN PLC	43
4.1 LATIHAN SOAL	43
4.1.1. LATIHAN SOAL PPML	55
4.1.2. PERANCANGAN PROYEK	56
DAFTAR PUSTAKA	

¥. –

 $b=_{j}$

~ 1

12 12 12

5

DAFTAR GAMBAR

E

6er 1

.....

.

Gambar 1.1 Konfigurasi Sistem Kontrol yang Umum	3
Gambar 1.2 Trainer Programable Logic Control	9
Gambar 1.3 Programable Logic Control	io
Gambar 1.4 Diagram Programable Logic Control	12
Gambar 1.5 Pengawatan Modul Input	13
Gambar 1.6 Pengawatan Modul Output	13
Gambar 1.7 Handled Programable Logic Control Consule	14
Gambar 2.1 Simbol STR	16
Gambar 2.2 Simbol STR NOT	16
Gambar 2.3 Simbol AND	17
Gambar 2.4 Simbol AND NOT	17
Gambar 2.5 Simbol OR	18
Gambar 2.6 Simbol OR NOT	18
Gambar 2.7 Ladder SET dan RESET	19
Gambar 2.8 SET OUT	., 19
Gambar 2.9 MCS (Master Control Set) dan MCR (Master Control Reset)	20
Gambar 2.10 TIM (TIMER)	20
Gambar 2.11 CNT (Counter)	21
Gambar 2 12 SR (Shi8 Register)	. 21

DAFTAR TABEL

.

x

Tabel 3.1 Aplikasi Instruksi Dasar Dalam Rangkaian	23
Tabel 3.2 Rangkaian Seri Dan Paralei	25
Tabel 3.3 Complex and Bridge Circuits	27
Tabel 3.4 Nonvolatile and Output Shut - off Circuits	29
Tabel 3.5 Timer and Counters Circuits	30
Tabel 3.6 One Shot	32
Tabel 3.7 Repeat Operation and Flip Flop Circuits	
Tabel 3.8 ON - OFF Delay and Scan Time Measurement Circuits	

F.

 $b \tau_{i}$

۳. 3

MODUL I

PENGENALAN PLC SAMSUNG

1.1 General Information PLC SAMSUNG

Programmable Logic Controller (PLC) pada intinya adalah sebuah perangkat elektronika dalam bentuk rak-rak unit yang digunakan untuk menggantikan suatu rangkaian control relay konvensional dengan berbagai kelebihannya.

PLC dibuat sedemikian rupa sehingga dengan hardware dan software yang ada dianalogikan untuk membuat rangkaian control listrik. Hardware yang berupa gerbang-gerbang logika yang digunakan untuk dapat mengendalikan peralatan control seperti limit, switch, push botton, kontak-kotak, relay, solenoid, lampu indicator, bahkan berupa sensor-sensor atau transduser dan peralatan input lain.

Software digunakan untuk menerjemahkan rangkaian control yang ada menjadi rangkaian gerbang logika dalam bentuk mnemonic sehingga dapat dimengerti oleh CPU dan PLC untuk mengendalikian peralatan control output seperti motor, solenoida, kontraktor, display, heater, lampu,dll. Disamping kemampuan-kemampuan khusus seperti aritmatika, logika dan kemampuan membentuk jaringan komunikasi antr PLC dengan computer.

Gambar dibawah ini berupa suatu konfigurasi sebuah control system yang umum

Gambar 1.1 Konfigurasi Sistem Kontrol Yang Umum

1.2 Keunggulan PLC dibanding dengan Panel Konvensional

- a. Panel Konvensional
 - 1. Wiring relative kompleks
 - 2. Spare part relative sulit
 - 3. Maintenance butuh waktu lama
 - 4. Pelacakan kesalahan kompleks
 - 5. Konsumsi daya cukup tinggi
 - 6. Dokumentasi lebih banyak
 - 7. Modifikasi butuh waktu lama
- b. System PLC
 - 1. Wiring relative sedikit
 - 2. Spare part mudah
 - 3. Maintenance relatif mudah
 - 4. Pelacakan kesalahan system mudah
 - 5. Konsumsi daya relatif rendah
 - 6. Dokumentasi gambar system mudah
 - 7. Modifikasi system cepat

1.2.1 Keuntungan Menggunakan PLC

- 1. Lama pengerjaan untuk sistem baru desain ulang lebih cepat
- 2. Modifikasi system mungkin tambahan biaya jika ada spare I/O
- 3. Perkiraan biaya suatu system baru lebih pasti
- 4. Relative mudah untuk dipelajari
- 5. Desain system baru mudah dimodifikasi
- 6. Aplikasi PLC sangat luas

- 7. Mudah dalam hal maintenance
- 8. Sangat handal
- 9. Standarisasi system kontrool lebih mudah diterapkan
- 10. Lebih aman untuk treknisi

1.3 Sistematika Mendesain Suatu Sistem dengan PLC

- 1. Mempelajari sampai mengerti betul urutan kerja system tersebut
- 2. Membuat flowchart system
- Membuat daftar semua input dan output terhadap I/O points dari PLC
- 4. Menerjemahkan flowchart ke ladder diagram dan disesuaikan dengan daftar I/O yang telah dibuat sebelumnya
- Memeriksa program jika masih ada kesalahan logika disesuaikan dengan logika pada flowchart dan juga harus sesuai dengan daftar I/O points yang telah dibuat
- 6. Mentransfer program ke memori PLC
- 7. Mensimulasikan program pada training kit PLC dan menganalisa apakah sudah sesuai dengan deskripsi yang diinginkan
- Jika simulasi sudah benar, barulah dihubungkan dengan peralatan I/O ke terminal PLC
- 9. Memeriksa kembali hubungan kabel dari peralatan I/O ke PLC, setelah yakin sudah benar lakukan testing program lagi
- Jika system sudah berjalan baik dan benar, barulah dilakukan dokumentasi gambar system secara skematis sehingga mudah dimengerti dan mudah dipelajari

1.4 Konfigurasi Sebuah PLC

1. Power Supply Unit

Unit ini berfungsi untuk memberikan sumber daya pada PLC. Modul ini sudah berupa switching power supply

2. CPU (Central Processing Unit)

Unit ini merupakan otak dari PLC. Disinilah program akan diolah sehingga system control yang telah kita desain bekerja seperti yang diinginkan

3. Memory Unit

RAM	: Random Access Memory
EPROM	: Erasable Programmable Read Only Memory
EEPROM	: Electrical Erasable Programmable Read Only Memory

4. Input Unit

Digital Input : Input Point Digital

- DC 24V input
- DC 5V input
- AC/DC 24V input
- AC 110V input
- AC 220V input

Analog Input : Input Point Linier

- 0 10V DC
- -10V DC s/d +10V DC
- 4-20 mA DC

5. Output Unit

Digital Output : Output Point Digital

- Relay output
- AC 110V output
- AC 220V output
- DC 24V output : PNP type dan NPN type

Analog Output : Output Point Linier

- 0 10 V DC
- -10V DC s/d +10V DC
- 4-20 mA DC

6. Peripheral

- Handleld Programming Console
- PROM writer
- GPC : Graphic Programming Console

1.4.1 Hal penting yang perlu diingat dalam PLC

- 1. Input
 - a. Jumlah input
 - b. Tipe input

2. Output

- a. Jumlah output
- b. Tipe output

- 3. Memori
 - a. RAM
 - b. EPROM
 - c. EEPROM
- 4. Peripheral
 - a. Handleld Programming Console
 - b. PROM Writer
 - c. GPC

Gambar 1.2 Trainer Programable Logic Control

Gambar 1.3 Programable Logic Control

Deskripsi Gambar :

1.	110/220V AC	: AC Input terminal
2.	RUN	: sinyal output on yang menunjukkan bahwa
		program telah berjalan dengan baik
3.	Е	: terminal yang menghubungkan PLC dengan PLC
		tambahan guna keperluan ekspand input/output
4.	Programmer connector	: digunakan untuk menghubungkan alat programmer
		ke PLC
5.	CPU ERR	: indicator error CPU PLC
	RUN	: indicator run PLC
6.	POWER	: indicator PLC Power "on"
	BATTERY	: indicator low back-up battery, bila menyala baterai
		harus diganti
7.	CPU module	
8.	Memory Cover	: didalamnya terdapat socket untuk menghubungkan
		dengan ROM atau EPROM
9.	Mounting slot	
10.	Input	
11.	Output	
12.	Mounting hole	
13.	Module output	
14.	Terminal output	
15.	Module output	
16.	Indicator output	
17.	Module input	

- 18. Module input
- 19. Terminal input
- 20. Input terminal

1.5 Pengawatan (wiring) pada terminal input/output

Untuk lebih jelasnya tentang terminal input/output dapat dilihat pada gambar berikut ini :

Gambar 1.4 Diagram Programable Logic Control

1.5.1 Pengawatan modul input

Detail gambar pengawatan modul input dapat dilihat pada gambar berikut :

Gambar 1.5 Pengawatan Modul Input

1.5.2 Pengawatan Modul Output

Detail gambar pengawatan modul output dapat diilihat pada gambar berikut :

Gambar 1.6 Pengawatan Modul Output

1.6 Pengoperasian Handleld Programming Console

Penggunaan handleld programming console merupakan salah satu saarana yang dapat digunakan untuk memasukkan instruksi-instruksi pemograman suatu rancangan control peralatan ke dalam PLC. Disamping itu, fungsi lain dari handleld programming console adalah digunakan untuk memonitor pelaksanaan program dengan melihat status I/O setelah program yang dimasukkan dieksekusi.

Gambar 1.7 Handleld Programable Logic Control Consule

•	For Comands	:	AND	OR	STR	NOT	συτ	TMR	CNT	SR	MCS	MCR	SET	RST
•	For Number	:	0	1	2	3	4	5	6	7	8	9.		

No	Command	Description	Function
1	AND		Series connection of data
			points. Logical
			multiplication
2	OR		Parallel connection of data
			points. Logical summation
3	STR	Store	Indicates the beginning of a
			circuit
4	NOT		Logical negation
5	OUT		Carries out the results of the
			programmed logical
			expression
6	TMR	Timer	ON delay timer
7	CNT	Counter	UP counter
8	SR	Shift Register	
9	MCS	Master control set	Establishes master control
10	MCR	Master control	Resets master control
		reset	
11	SET		Turn on the designated coil
12	RST		Turn off the designated coil

 Tabel 1.1 Pengoperasian Handleld Programming Console

MODUL II

INSTRUKSI-INSTRUKSI DASAR PLC

1.1 Instruksi – Instruksi Dasar PLC

Semua instruksi (perintah program) yang ada dibawah ini merupakan konstruksi paling dasar.berikut adalah Instruksi – Instruksi Dasar PLC

1. STR

- Instruksi ini dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
- Logikanya seperti kontak NO relay
- Ladder diagram symbol : STL :

STR R 00000

2. STR NOT

- Instruksi ini hanya dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
- Logikanya seperti kontak NC relay
- Ladder digram symbol : STL :

Gambar 2.2 Symbol STR NOT

3. AND

- Instruksi ini hanya dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
- Logikanya seperti kontak NC relay
- Ladder digram symbol : STL :

В	в	STR	R	00000
-		AND	R	00001

4. AND NOT

- Instruksi ini hanya dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
- Logikanya seperti kontak NC relay
- Ladder digram symbol : STL :

STR R 00000 AND NOT R 00002

Gambar 2.4 Symbol AND NOT

5. OR

- Instruksi ini hanya dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
- Logikanya seperti kontak NC relay

•	Ladder digram symbol :	STL	:
---	------------------------	-----	---

STR R 00003 OR R 00004

Gambar 2.5 Symbol OR

- 6. OR NOT
 - Instruksi ini hanya dibutuhkan jika urutan kerja (sequence) pada suatu system control hanya membutuhkan satu kondisi logic saja dan sudah dituntut untuk mengeluarkan satu output
 - Logikanya seperti kontak NC relay
 - Ladder digram symbol :

Gambar 2.6 Symbol OR NOT

7. SET dan RESET

Instruksi set adalah bersifat seperti OUT tetapi pada instruksi set, bit yang menjadi operandnya akan bersifat latching (mempertahankan kondisinya). Artinya bit-nya akan tetap dalam kondisi ON walalupun kondisi inputnya sudah OFF. Untuk mengembalikannya ke kondisi OFF harus digunakan instruksi RESET.

Contoh :

Gambar 2.7 Ladder Set dan Reset

Mnemonic/ STL :

Alamat	Instruksi	Operand
00000	STR	00002
00001	SET	XXXXX
00002	STR	00000
00003	RESET	XXXXX

8. SET OUT

Gambar 2.8 Set Out

9. MCS (Master Control Set) dan MCR (Master Control Reset)

Gambar 2.9 MCS (Master Control Set) dan MCR (Master Control Reset)

10. TIM (Timer)

Gambar 2.10 TIM (Timer)

11. CNT (Counter)

Gambar 2.11 CNT (Counter)

12. SR (Shift Register)

Gambar 2.12SR (Shift Register)

Catatan :

- 1. Pemrograman mempunyai urutan yaitu Shift data , Shift Pulsa, Signal Reset, dll
- Shift Register mempunyai nilai kisaran yang ditentukan dengan dua angka alamat antara 400 dan 577: satu untuk awal dan yang lainnya untuk mengakhiri. ukuran register adalah dari 2 digit sampai 128
- 3. Pergeseran pulsa menggeser data dari kanan ke kiri, dan ketika listrik hilang, ia mempertahankan statement program tersebut.
- 4. Ketika input RST aktif, semua register berkondisi off
- 5. Data seharusnya mengikuti pergeseran data dari kiri ke kanan
- 6. Ketika diperlukan untuk melewati beberapa register, hubungkan dua power SR dengan menyediakan data SR pertama sebagai data pergeseran ke SR kedua. Namun, ketika program yang dimasukkan, kedua SR harus diprogram terlebih dahulu. Lihat contoh 18.

MODUL III

APLIKASI INSTRUKSI DASAR DALAM PEMROGRAMAN

No Command Logic CK1 Function command numbers 9 OUT A coil specified to reflect the result of the logic circuit 000-373, 376 (total 253) 10 SET XXX XXX XXX XXX XXX XXX XXX XXX XXX XX	NL-	Comment	Lasia CVT	Encoration.	Compound	Usable I/O
9 OUT XXX O A coil specified to reflect the result of the logic circuit 000-373, 376 (total 253) 9 OUT XXX O - 000-373, 376 (total 253) 10 SET XXX O Turns on the specified coil as a results of 	INO	Command	Logic CK I	Function	command	numbers
9 OUT \xrightarrow{XXX} to reflect the result of the logic circuit \overline{XXX}				A coil specified		
9 OUT				to reflect the		000-373, 376
logic circuit Iogic circuit Turns on the specified coil 000-373, 376 as a results of	9	OUT	O	result of the	-	(total 253)
Turns on the Turns on the 10 SET			1	logic circuit		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Turns on the		
10 SET as a results of - 400-577 (can			6an	specified coil		000-373, 376
	10	SET	XXX	as a results of	-	400-577 (can
the logic be repeated)			3	the logic		be repeated)
execution				execution		• <i>• •</i>
Turns off the				Turns off the		
specified coil 000-373 376				specified coil		000-373 376
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	RST	xxx	as a results of	_	400-577 (can
(11) (12)	11	Rot	···· (R)(R)	the logics		be repated)
execution				execution		
The specified				The meeting		
12 SET OUT xxx output opil	12	SET OUT	xxx	autrut agil		000-157
12 SET OUT	12	SELOUI		remains ON	-	(total 112)
Master control			NICS -	Master control		
13 MCS $\rightarrow \rightarrow \rightarrow$	13	MCS		set	-	-
14 MCR Master control	14	MCR		Master control		
reset				reset		

Tabel 3.1. Aplikasi Instruksi Dasar Dalam Rangkaian

			Sets on-delay	*600-673
			time through	(total 60)
15	TIM		logics (t:set	*600-673 (total 60) *max. time 999,9seconds with 0,1 sec.increment *600- 673(total 60) *max.counter setting : 9999 400-577 (total 128)
15	11111		time)	999,9seconds
				with 0,1
				sec.increment
			Sets counter	*600-
			value through	673(total 60)
16	CNT	Reset 6XX X	logics (t:set	*max.counter
			value)	setting : 9999
			Set a shift	
			register	
17	SD	Input SR	(xxx:start	*600-673 (total 60) *max. time 999,9seconds with 0,1 sec.increment *600- 673(total 60) *max.counter setting : 9999 400-577 (total 128)
	эк	Clock XXX	address)	(total 128)
		Reset YYY	(yyy:end	
			address)	

3.1 Rangkaian Seri dan Paralel

Tabel 3.1 Rangkaian Seri dan Paralel

C/T	SEQUENCE	PROGRAM	1	NOTES	
		COMMAND	DATA		
				program a- blocks	
		STR	0	first, then b- blocks	
		AND	1	1	
1. Parallel /		OR	20		
serial	a block b block	AND	2		
		AND NOT	3	l	
		OUT	20	1	
				• program a- b-	
		STR	0	blocks	
		AND NOT	1	• Combine with AND	
		STR	2	STR	
		AND	3		
2. Serial / parallel	a block b block	OR	20	3	
F		OR	4		
		AND STR	-	ь I	
		OUT	20	1	
				a · b	

	bl block 0 1 2 3 1 1 4 1 20 20 b2 block a block b block	STR NOT AND STR AND NOT STR NOT AND OR STR AND STR OUT	0 1 2 3 4 20 - - 20	 combine with OR STR Combine with AND STR b1 <l< th=""></l<>
3. Serial Connection Of parallel Circuits	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STR AND STR AND NOT OR STR OR STR AND STR AND OR STR AND STR OUT	0 1 2 3 - 4 5 6 7 - - 20	combine a, b with and STR 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

3.2 Complex and Bridge Circuits

Tuber ele compres and bringe en cures

		PROGRAM	1	
С/Т	SEQUENCE	SECHENCE	NOTES	
0,1	SEQUENCE		ΠΑΤΑ	NOTES
		COMMINAND		
				Convert a complex
		бтр	1	circuit to an simple
		SIK	1	aquivalant circuit
		STD NOT	2	equivalent circuit
		SIKNUI	2	before programming
		AND	2	
		AND	3	
		стр	4	
	4 5 6	SIK	4	
		стр	5	
		51K	Э	
	1 <u>,</u> ·		(
		AND	0	
		OD NOT	-	
		UK NUI	/	
	D			
		ANDSIK	-	
		OKSIK	-	
4. Complex		ANDSIK	-	
Circuit		OUT	20	
Circuit		001	20	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	стр	1	
		SIK	1	
		ΑΝΌ ΝΟΤ	2	
		AND NOT	2	
			3	
		AND	3	
		стр	1	
		SIK	1	
			4	
		AND	-	
		AND	5	
			5	
		AND	6	
			U	
		OR STR		
		UNDIN		
1	1	1	1	1

		STR	1	
		AND	4	
		AND NOT	7	
		OR STR	-	
		OUT	20	
				A bridge circuits
		STR	0	can not be
5. Bridge Circuit	$ \begin{bmatrix} 0 & 1 & & & \\ 1 & 1 & & & & \\ 2 & 3 & & & & & \\ \end{bmatrix} $	C/TD		programmed right
		SIK 2	2	away.
		AND	4	Draw an
		OR STR	-	equivalent circuit
			1	which can be
		AND	1	programmed
		OUT	20	
		STR	0	
		AND	4	
		OR	2	
		AND	3	
		OUT	21	
			1	

3.3 Non Volatile and Output Shut-Off Circuits

C/T	SEQUENCE	PROGRAM	1	NOTES
		COMMAND	DATA	
6. Non- volatile circuit	1 4 4 3 $2 4 1 4 8$ $4 1 4 8$ $3 4 1 8$ $4 0 4 7$ $2 0 7$ $2 0 7$	STR AND NOT OR SET STR AND NOT OR RST STR OUT	1 4 2 400 4 1 3 400 400 20	This program utilizes shift register relay (400- 577) 1
7. External output shut – off circuit	$ \begin{array}{c} 1 \\ 1 \\ 376 \\ 2 \\ 3 \\ 1 \\ 3 \\ 2 \\ 21 \\ 3 \\ 22 \\ 50 \\ 50 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	STR OR AND NOT OUT STR NOT OR OUT SET SET OUT	1 376 4 376 2 3 20 21 22	Output shut-off CN Cutput shut-off OFF 1 Cutput shut-off OFF 1 Cutput shut-off OFF 2 Cu

Tabel 3.4 Non Volatile and Output Shut-off Circuits

3.4 Timer and Counters Circuits

Tabel 3.5 Timer and Counters Circuits

C/T	SEQUENCE	PROGRAM		NOTES
		COMMAND	DATA	
8. Timer + timer	1 T 601 T 601 T 602 99 T 602 1 20	STR TIM - STR TIM TIM - STR TIM OUT	1 601 99 601 602 99 602 20	$\frac{1}{1000}$ $1000000000000000000000000000000000000$
9. Timer + Counter	$ \begin{array}{c} 1 & T 601 \\ \hline 1 & \hline 1 $	STR AND NOT TIM TIM - STR TIM STR CNT - STR CNT	1 601 601 3 601 4 602 10 602	¹ T 601 3050C 20 0 00000000000000000000000000000

		OUT	20	
C/T	SEQUENCE	PROGRAM	1 DATA	NOTES
10. Counter + counter	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STR AND NOT OUT STR OUT STR OUT STR AND NOT CNT - STR AND NOT OR CNT - STR AND NOT STR AND NOT STR AND NOT - STR CNT - STR CNT STR CNT -	1 340 341 1 340 341 342 600 4 600 9999 342 341 600 342 341 600 342 341 600 342 342 4 601 9999 601 600	 When the maximum counter setting exceeds 9.999, two counters can be used to extend the ranges. The example shows a circuits that can count up to 99.999.999. in this case, c600 count the lower fource digits (9.999) and C601 counts the upper four digits (99.99)

OR	343
AND NOT	4
OUT	343
OUT	20

3.5 One Shot

Tabel 3.6 One Shot

C/T	SEQUENCE	PROGRAM	1	NOTES
_, .		COMMAND	DATA	
11. One – Short Circuit	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	STR AND NOT OUT STR OUT STR NOT AND NOT OUT STR NOT	1 601 99 601 602 4 31 30 4	 ON - GOING one shoot 1
		OUT	31	

3.6 Repeat Operation and Flip Flop Circuits

C/T	SEQUENCE	PROGRAM	DATA	NOTES
12. Repeat Operation		STR AND NOT TIM TIM - STR TIM TIM - OUT	1 602 601 2 601 602 1 20	 Input 1 20 20 20 20 output is ON one second at every two seconds
13. Flip – Flop Circuits	$ \begin{array}{c} 0 & 173 \\ 171 \\ 171 \\ 172 \\ 172 \\ 172 \\ 173 \\ $	STR OR AND NOT OUT OUT STR NOT AND STR AND NOT OR STR	0 171 173 171 20 0 171 172 173	OM OFF ON OFF 0

Tabel 3.7 Repeat Operation and Flip Flop Circuits

	OUT	172
	STR	172
	OR	173
	AND	0
	OUT	173
the second second second		
0 161	STR	0
	AND NOT	161
	OUT	160
	STR	0
	OUT	161
	STR	160
160 162'	AND	30
20	OUT	162
	STR	160
	OR	20

3.7 ON-OFF delay and scan time measurement circuits

C/T SEQUENCE PROC	GRAM	NOTES
COMMAND	DATA	
14. ON - OFF Delay Circuits	0 600 10 30 0 601 5 600 30 601	0 T 600 T 600 T 601 20 10sec 5sec 1

Tabel 3.8 ON-OFF Delay and Scan Time Measurement Circuits

3.8 Pemograman Programable Logic Control (PLC)

Beberapa contoh ladder diagram yang kompleks dan harus menggunakan instruksi AND STR dan OR STR atau keduanya.

1. Kombinasi AND before OR

Mnemonic / STL :

Alamat	Instruksi	Operand
00000	STR	00002
00001	AND	00003
00002	AND NOT	00000
00003	OR	00004
00004	Command	

2. Kombinasi OR before AND

Mnemonic / STL :

Alamat	Instruksi	Operand
00000	STR	00002
00001	OR	00004
00002	AND	00000
00003	AND	00001
00004	Command	

Contoh 1:

Mnemonic /	STL :	

Alamat	Instruksi	Operand
00000	STR	00000
00001	OR NOT	00001
00002	STR NOT	00002
00003	OR	00003
00004	AND STR	-
00005	STR	00004
00006	OR	00005
00007	AND STR	-
00008	Command	-

Atau bisa ditulis dengan cara

Alamat	Instruksi	Operand	
00000	STR	00000	
00001	OR NOT	00001	
00002	STR NOT	00002	
00003	OR	00003	
00004	STR	00004	
00005	OR	00005	
00006	AND STR	-	
00007	AND STR	-	
00008	Command	-	

Mnemonic / STL :

Alamat	Instruksi	Operand
00000	STR	00000
00001	AND NOT	00001
00002	STR NOT	00002
00003	AND NOT	00003
00004	OR STR	-
00005	STR	00004
00006	AND	00005
00007	OR STR	-
00008	Command	-

Atau bisa ditulis dengan cara :

Alamat	Instruksi	Operand
00000	STR	00000
00001	AND NOT	00001
00002	STR NOT	00002
00003	AND NOT	00003
00004	STR	00004
00005	AND	00005
00006	OR STR	-
00007	OR STR	-
00008	Command	-

Mnemonic / STL :

Alamat	Instruksi	Operand	
00000	STR	00000	-
00001	AND NOT	00001	
00002	STR	00002	
00003	AND	00003	
00004	OR	-	
00005	OR	00004	
00006	AND STR	00005	
00007	Command	-	

Penyederhanaan Contoh 3 :

Instruksi	Operand
STR	00000
AND	00001
OR	00002
OR	00003
AND	00004
AND	00005
Command	
	Instruksi STR AND OR OR AND AND Command

Soal – soal Latihan :

Mnemonic / STL :

Tuliskan Ladder diagram dibawah ini menjadi mnemonicnya dan kemudian sederhanakan laddernya jika mungkin. Setelah laddernya menjadi lebih sederhana, tulis kembali mneumonic dari ladder yang telah sederhana tadi.

MODUL IV PEMROGRAMAN PLC

4.1 LATIHAN SOAL

Soal-soal latihan berikut ini tidak tergantung pada satu tipe PLC. Jadi pada saat anda mengerjakannya, harus disesuaikan dengan alamat memori PLC.

Untuk mengerjakan soal-soal latihan ini, harus anda tentukan dahulu koneksi input dan output sesuai dengan tipe PLC yang akan digunakan, kemudian buatlah ladder diagram tersebut ke bentuk mnemonic.

- Buatlah program on delay timer dan off delay timer dengan lama waktu tunda 3 detik dan 4 detik untuk menggerakkan sebuah output. Masing-masing timer di start dengan menggunakan push button. Jika push button on delay timer dittekan, output tidak langsung on akan tetapi ditunda delu selama 3 detik (sete;lah 3 detik baru on). Jika push button off delay timer ditekan, output tidak langsung off akan tetapi ditunda dahulu selama 4 detik (setelah 4 detik baru off)
- 2. Buatlah program sebuah lampu yang berkedip selama selang waktu 1,5 detik dimana untuk 1,5 detik pertama lampu hidup sedang 1,5 detik berikutnya lampu padam demikian seterusnya. Untuk memulainya dengan menekan sebuah push button. Dapat juga anda variasi dengan menambahkan sebuah push button stop untuk menghentikannya.
- 3. Coba lagi untuk soal no.2 dengan menggunakan 2 buah lampu tetapi sekarang hidup dan padamnya bergantian. Jika lampu 1 hidup maka lampu 2 harus mati demikian sebaliknya. Untuk memulainya juga dengan sebuah push button.
- Sebuah push button difungsikan untuk menghidupkan dan mematikan sebuah lampu. Dan system ini bekerja sebagai berikut: tekan-hidup-tekan—mati,tekan hidup,dst
- 5. Buatlah program lampu berjalan dimulai sebanyak 10 buah lampu. Lampu 1 mulai menyala setelah tombol start ditekan dan setiap satu detik akan bergeser ke kanan. Setelah lampu ke 10 menyala akan berulang lagi dimulai dari lampu 1

4.1.1 LATIHAN SOAL PPML

Anda telah ikut pelatihan PPML, sekarang aplikasikan rancangan pengontrolan motor yang ada pada modul PPML ke program PLC.

Adapun yang diminta untuk diaplikasikan ke program PLC adalah :

a. Rancangan control pembalikan arah putaran motor 3 phasa (manual)

- b. Rancangan control pengoperasian 2 motor 3 phasa secara berurutan(manual)
- c. Rancangan control pengoperasian 2 motor 3 phasa secara berurutan(otomatis)
- d. Rancangan control pengoperasian starting motor 3 phasa star delta (manual)
- e. Rancangan control pengoperasian starting motor 3 phasa star delta (otomatis)

4.1.2 PERANCANGAN PROYEK

1. SISTEM KONTROL PEMANAS CAIRAN

1.1 Umum

System control berikut dibuat untuk mengimplementasikan kemampuan PLC dalam bentuk rangkaian control pemanas yang sederhana. Proses pemanasan menggunakan sebuah heater dan dua buah thermocouple sebagai sensor suhunya. Control dibuat agar dapat memanaskan campuran bahan dengan 2 tingkat panas, yang didetteksi dengan aktifnya limit switch pada thermocouple sesuai range yang digunakan.

1.2 Deskripsi Sistem

1.2.1 Deskripsi Dasar

Plant terdiri dari sebuah silo dengan perangkat control, yang dibawahnya terdapat tangki diatas belt conveyor sebagai penampung hasil proses pemanasan didalam silo. Peralatan control yang digunakan adalah motor-motor, solenoid valve, switch, lampu indicator, push button dan heater (lihat table input/output).

Proses dimulai dengan pemanasan ruang silo sampai dengan 100^oC sebelum diisi dengan bahan (cairan) yang akan dipanaskan. Bahan tersebut terdiri dari dua macam dengan saluran pengisi yang berbeda. Setelah pengisian bahan selesai, temperature silo dinaikkan sampai 300^oC kemudian diaduk dengan penggerak motor selama 10 menit. Setelah proses diatas selesai, semua isi silo dikeluarkan ke

tangki penampung kemudian dibawa dengan konveyor. Proses ini terus berulang sampai tombol off dimatikan atau tangki penampung yang tidak tersedia selama selang waktu tertentu.

Bila pada saat proses berjalan dalam kondisi otomatis dan suplai daya mati, maka setelah suplai daya hidup kembali, indicator "Plant Not Ready" menyala dan harus dioperasikan pada mode manual sampai seluruh prooses selesai dan setelah itu plant dapat dioperasikan kembali pada mode otomatis.

1.2.2 Deskripsi Lengkap

System control pemanas ini dapat dibagi menjadi tiga bagian yaitu plant (silo dan peralatan kontrolnya), kotak panel daya dengan PLC dan panel control. Pada pemasangannya PLC ditempatkan bersama-sama dengan rangkaian penggerak daya didalam kotak panel.

3.2.2.a. Operasi Otomatis

Pengoperasian secara otomatis dimulai dengan menempatkan saklar auto/manual pada posisi auto. Pada kondisi ini, semua peralatan control secara manual tidak dapat digunakan. Pada saat pertama masuk mode auto, semua output akan off dan indicator auto menyala on. Pengoperasian awal hanya dapat dilakukan dengan menekan tombol start dimana tangki penampung telah berada ditempatnya, yang dideteksi dengan aktifnya limit switch tangki dan silo dalam keadaan kosong.

Proses diawali dengan pemanasan ruang silo dengan heater pada suhu 100°C. Pendeteksian suhu proses ini dilakukan oleh thermostart 1 yang telah disetting pada 100°C, dengan ditandai aktifnya limit switch pada thermostat tersebut. Pada pertama kali thermostat ini, yaitu suhu silo telah mencapai 100°C dilanjutkan dengan proses pemasukan bahan cair dari valve 1 sampai pada volume tertentu yang ditentukan dengan level switch 1. Pemasukan bahan 1 selesai bila level switch 1 aktif, dilanjutkan dengan pemasukan bahan 2 melaui valve 2 sampai pada volume akhir yang dideteksi oleh level switch 2. Bila level switch ini aktif, proses pengisian bahan selesai. Selama proses pengisian bahan, temperature silo dipertahankan pada suhu 100°C yang ditandai dengan indicator suhu 100°C menyala.

Proses dilanjutkan dengan pemanasan bahan pada temperature 300°C. dalam proses ini, pendeteksian suhu dilakukan oleh thermostat 2 dengan ditandai aktifnya limit switch thermostat pada suhu 300°C, dilakukan dengan pengadukan bahan. Bila temperature silo telah mencapai 300°C dilakukan pengadukan bahan dengan menghidupkan motor mixer selama 10 menit. Temperature silo tetap dipertahankan pada suhu 300°C.

Beberapa waktu setelah pengadukan bahan selesai, heater dimatikan dan beban campuran siap dikeluarkan melalui valve 3 secara gravitasi, yang berada tepat diatas tanki penampung. Semua bahan dikeluarkan valve 3 akan menutup bila limit switch "Empty" aktif (NO). setelah valve 3 menutup, beberapa saat kemudian motor conveyor akan bekerja membawa bahan tersebut ke tempat yang ditentukan.

Proses diatas akan bekerja terus menerus selama proses tidak dihentikan (tombol off ditekan) atau sampai tangki penampung baru yang tidak tersedia dibawah silo selama 15 detik setelah conveyor berjalan. Dalam hal ini ditentukan tangki penampung telah disusun berurutan sedemikian rupa sehingga setelah tangki nterdepan terisi bersama-sama dibawa oleh conveyor sampai limit switch tangki mendeteksi keberadaan tangki penampung yang baru (dibelakang tangki pertama) tepat pada posisinya untuk penampungan bahan pada proses selanjutnya dan tangki pertama setelah sampai pada tempat yang ditentukan sebagai hasil dari proses tersebut.

Apabila dihendaki proses dihentikan saat kondisi otomatis bekerja, dapat digunakan tombol untuk menghentikannya dengan konsekwensi proses akan dimulai dari awal walaupun proses sebelumnya belum selesai. Pada kondisi ini ditandai dengan menyalanya indicator "Plant Not Ready" setelah tombol off ditekan. Untuk mengatasi hal ini kontrol harus dioperasikan pada manual sampai seluruh proses selesai.

3.2.2.b. Operasi Manual

Mode manual dimulai dengan menempatkan switch mode pada posisi manual. Indicator mode akan berganti pada mode manual. Masing-masing output dapat dioperasikan melalui switch pengendali masing-masing. Hal ini dilakukan bila diperlukan pengendalian secara langsung untuk perbaikan atau melanjutkan proses sebelumnya.

Kondisi manual disini juga dipengaruhi oleh peralatan control yang digunakan pada plant. Switch heater 1 dapat menghidupkan heater sampai pada suhu 100°C. Selama switch ini on, pengontrol heater selanjutnya dikendalikan oleh limit switch thermostat (100°C).

3.2.2.c. Operasi Gangguan

Bila pada saat proses berjalan pada mode otomatis tiba-tiba suplai daya mati, maka control akan kembali reset pada saat dihidupkan kembali. Untuk meneruskan proses harus dioperasikan pada mode manual sampai seluruh proses berakhir dan selanjutnya siap untuk dioperasikan pada mode otomatis kembali.

DAFTAR PUSTAKA

- 1. Robert L. McIntyre, "Industrial Motor Control Fudamentals Fourt Edition", Late Assistant Director National Joint Apprenticeship and Training Committee for the Electrical Industry.
- 2. http://www.samsungplc.co.kr/narae_pds/data/resource/touch/PLC_Connec tionE.pdf
- 3. http://platforma.astor.com.pl/files/getfile/id/4615