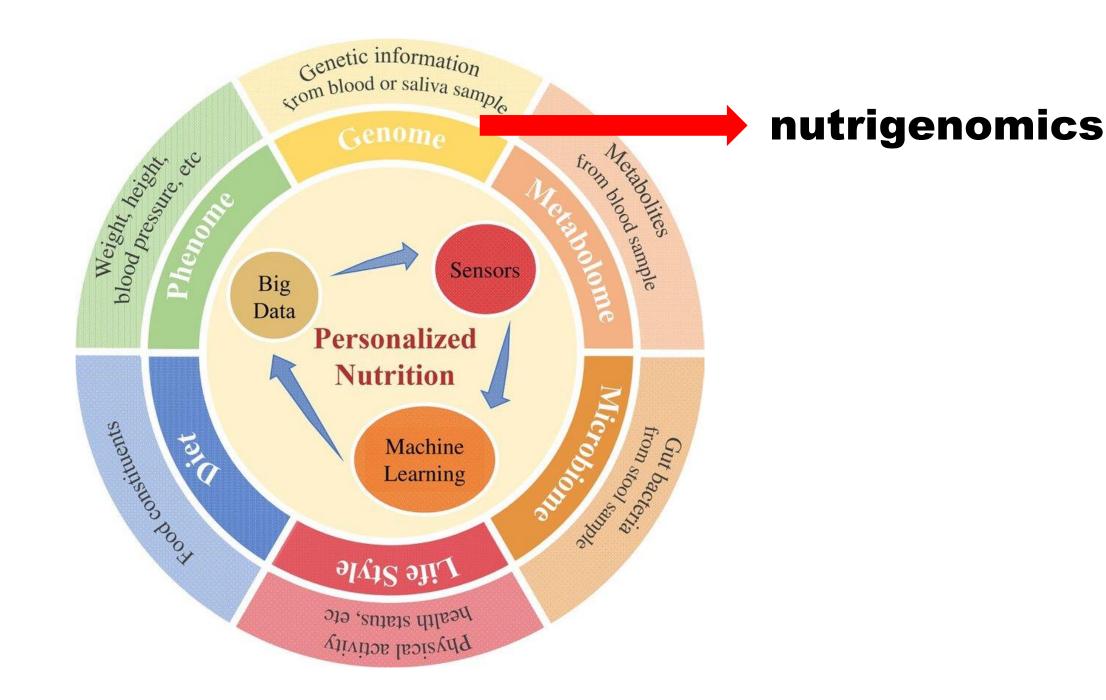
NUTRIGENOMICS AND CANCER CACHEXIA

TIRTA PRAWITA SARI

Updated 2023

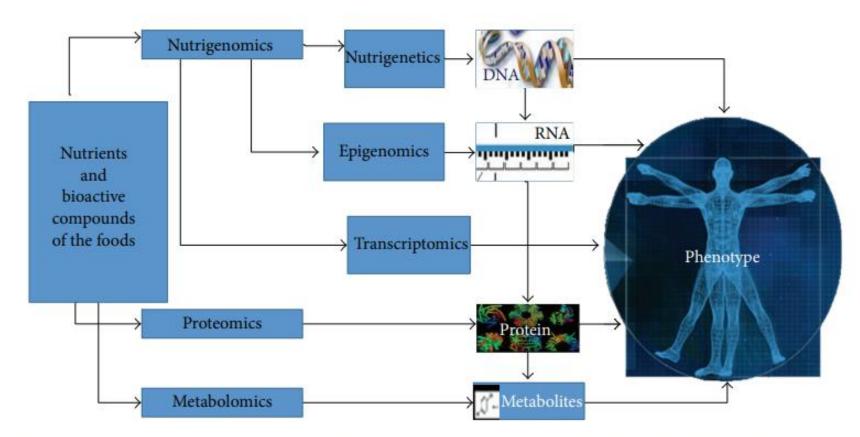
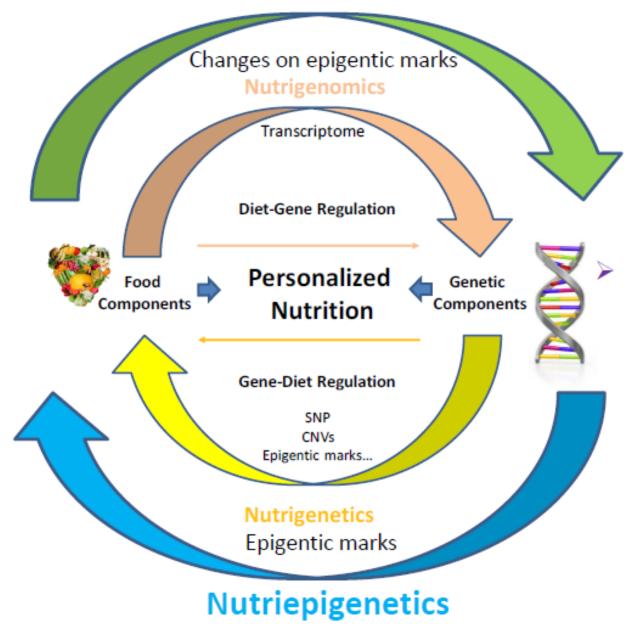
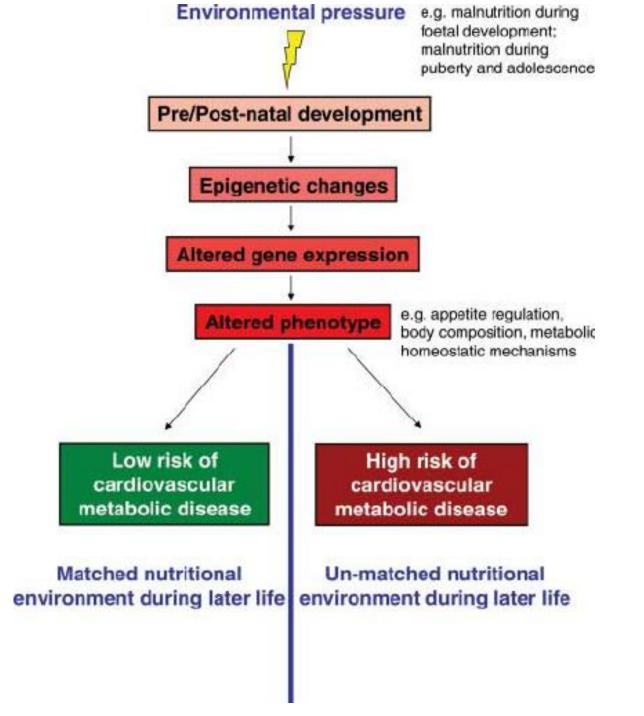

Personalized nutrition

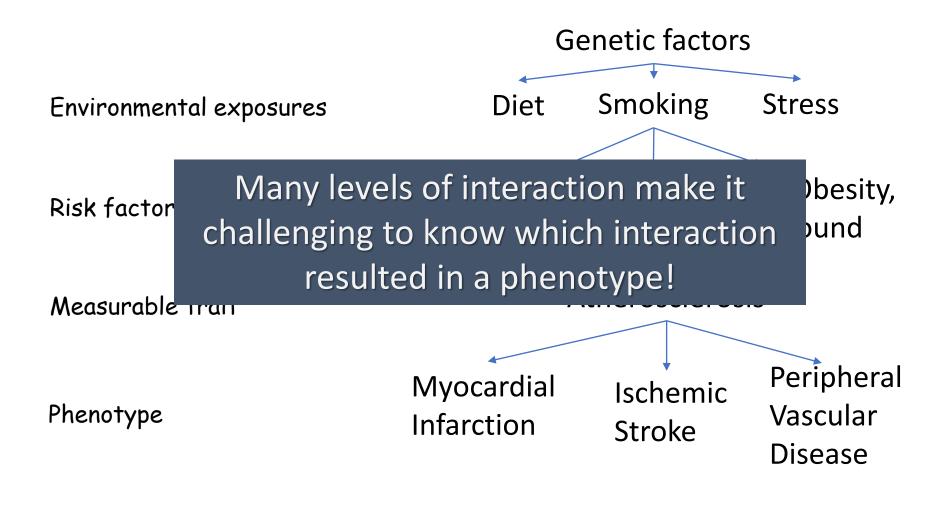
An approach that counts on details of an individual characteristics to evolve a package of nutritional counsel, products, or services. Gibney et al. (2016), explained it as a perspective "assists individuals in achieving a lasting dietary behavior change that is beneficial for health".

Precision nutrition

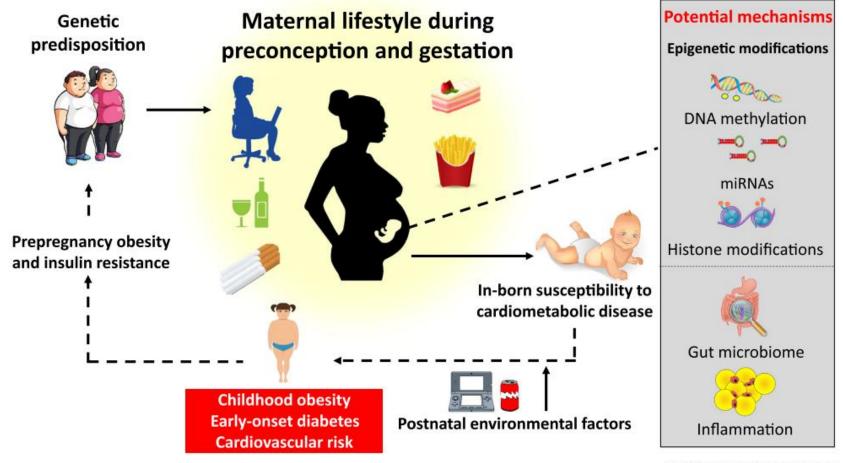
characterization of gene products influenced by nutrient intake and their resulted metabolic consequences (Ordovas et al., 2018). Zeisel (2020), has recommended and justified the use of term "precision nutrition" rather than "personalized nutrition" because the concept has even greater potential to categorize the whole population in different groups based on biomarkers studies.

Specific healthy eating or nutritional guidance as per need

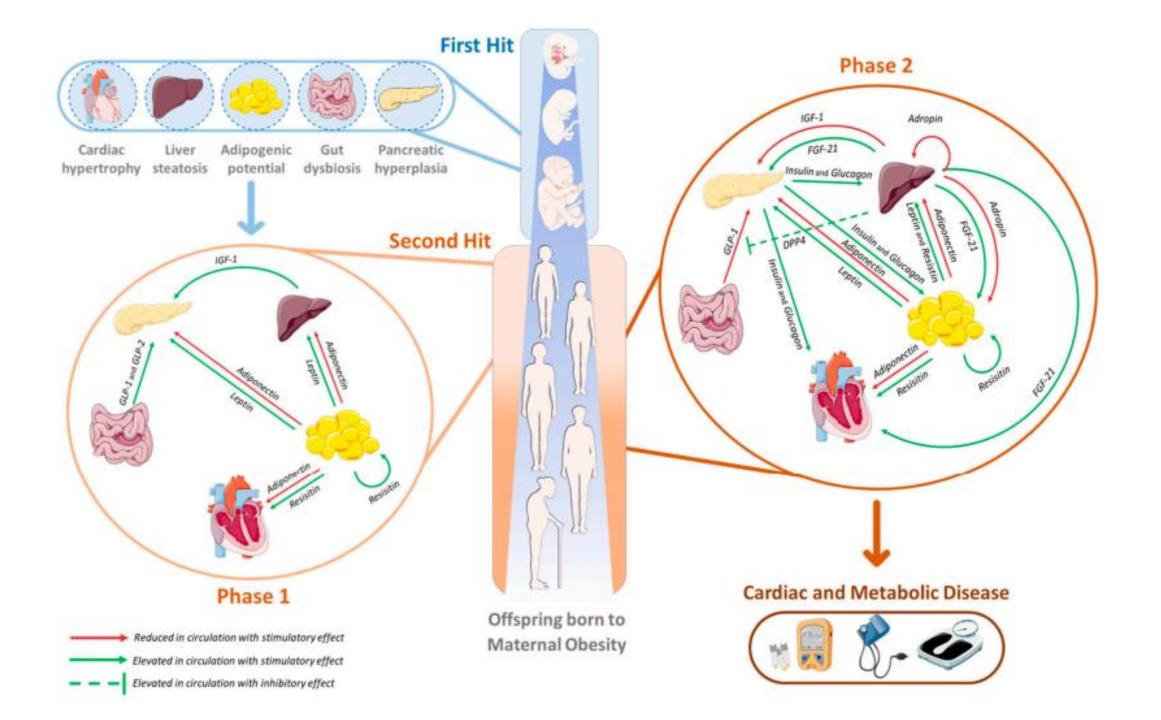





FIGURE 1: "Omics" sciences used in understanding the relationship between nutrition versus health versus disease (source: [4], with modifications; [9] with modifications).

Nutriepigenomics



The complexity of interaction...


Slide adapted from Mente, A.

Pentingnya nutrisi yang adekuat dimasa 1000 hari pertama kehidupan

Trends in Endocrinology & Metabolism

Figure 1. The Intergenerational Cycle of Chronic Cardiometabolic Disorders. Poor preconception and gestational maternal lifestyle predispose both mother and baby to unfavourable pregnancy outcomes, creating an intergenerational cycle of obesity, insulin resistance, and associated disorders.

Contoh aplikasi: NUTRIGENME

Summary of Results

Nutrient Metabolism

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Vitamin A	BCMO1, rs11645428	GG	GG	Elevated	Focus on consuming pre-formed sources of vitamin A.
Vitamin B _{it}	FUT2, rs601338	GG or GA	GG	Elevated	Focus on consuming bloavailable sources of vitamin B12.
Vitamin C	GSTT1, rs2266633	Del	Del	Elevated	Meet the RDA for vitamin C daily.
Vitamin D	CYP2R1, rs10741657		GA	Elevated	
Vitamin D	GC, rs2282679	Algorithm	GT	Elevated	Consume 1000 IU (25 mcg) vitamin D daily.
Vitamin E	COMT, rs4680	GG	AA	Typical	Meet the RDA for vitamin E daily from food sources rich in vitamin E.
Folate	MTHFR, rs1801133	CT or TT	cc	Typical	Meet the RDA for folate daily.
Choline	MTHFD1, rs2236225	AG or AA	AG	Elevated	Meet the Al for choline daily.
Calcium	GC, rs7041	Algorithm	π	Typical	Meet the RDA for calcium daily.
	GC, rs4588		CA		
	SLC17A1, rs17342717		сс		
Iron Overload	HFE, rs1800562	Algorithm	GG	Low	Follow the recommendations provided in the Low Iron Status section.
	HFE, rs1799945		CC		
	TMPRSS6, rs4820268		GA		
Low Iron Status	TFR2, rs7385804	Algorithm	AA	Elevated	Meet the RDA for iron and consume sources of vitamin C with iron-rich foods.
	TF, rs3811647		GA		

Food Intolerances

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Lactose	MCM6, rs4988235	CC or CT	CC	Elevated	Limit dairy intake if you experience gastrointestinal symptoms.
HLA, rs2395182 HLA, rs7775228 HLA, rs2187668 HLA, rs4639334 HLA, rs7454108 HLA, rs4713586		Algorithm	GT	Medium	Medium risk for gluten intolerance.
			π		
			CT		
			GG		
	π				
			AA		
Caffeine	ADORA2A, rs5751876	π	ст	Typical	Follow the recommendations provided by the CYP1A2 gene section of this report.

Cardiometabolic Health

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Cafleine	CYP1A2, rs2472300	GA or AA	GG	Typical	Limit caffeine intake to 300 or 400 mg/day.
Glycaemic Index	TCF7L2, rs12255372	TT or GT	GG	Typical	Make at least half of grain products whole grain.
Sodium	ACE, rs4343	GA or AA	GG	Typical	Limit sodium intake to 2300 mg/day.
Omega-6 and Omega-3 Fat	FADS1, rs174547	CC or CT	cc	Elevated	Consume up to 5% of energy per day of omega-8 LA fat and 0.8%-1.2% of energy per day of omega-3 ALA fat.
Physical Activity	LIPC, rs1800588	ΠαCT	π	Enhanced	Aim for at least 150 min/week of cardio and at least 2 days/week of muscle-strengthening activities.

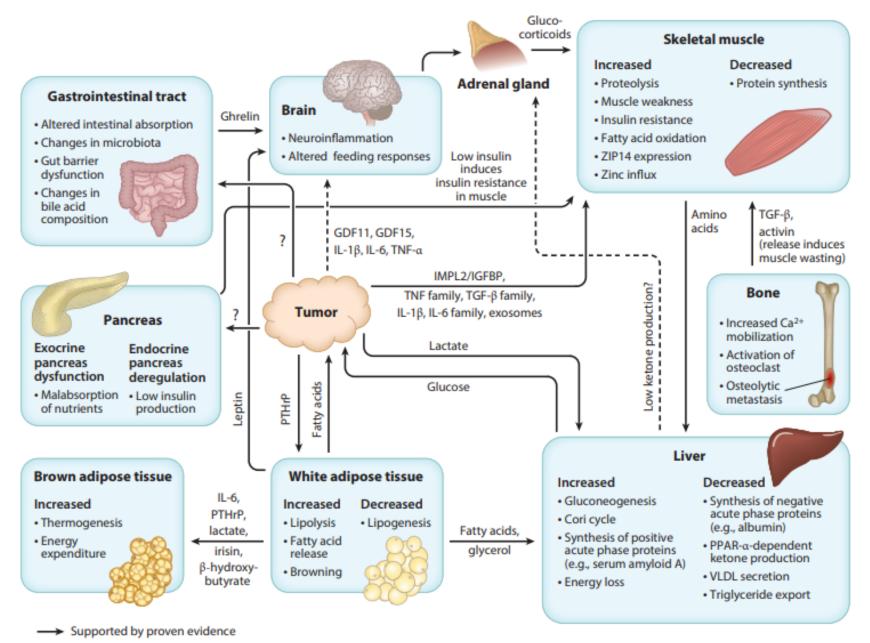
Weight Management and Body Composition

Dietary Component	Gene. rs Number	Response Variant	Your Variant	Your Response	Recommendations
Physical Activity	FTO, rs9939609	Algorithm GG	TA		Aim for 150 min/week of cardio and at least 2 days/week
	ADRB2, rs1042713		GG	Typical	of muscle-strengthening activities.
Energy	UCP1, rs1800592	GG or GA	AA	Typical	For weight loss, aim for a daily energy deficit of 10-20% from your current energy needs.
Protein	FTO, rs9939609	AA	TA	Typical	Consume 15-25% of energy from protein.
Total Fat	TCF7L2, rs7903146	π	cc	Typical	Consume 20-35% of energy from fat.
Saturated Fat	APOA2, rs5082	cc	π	Typical	Limit intake of saturated fat to no more than 10% of energy
Saturated and Unsaturated Fat	FTO, rs9939609	TA or AA	TA	Enhanced	Limit intake of saturated fat to no more than 10% of energy Consume at least 5% of energy from polyunsaturated fat.
Monounsaturated Fat	PPARy2, rs1801282	GG or GC	сс	Typical	Aim for a balance of saturated, monounsaturated and polyunsaturated fats to meet your total daily fat intake.

Eating Habits

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk/ Response	Recommendations
Fat Taste Perception	CD36, rs1761667	GG or GA	GG	Enhanced	You have an enhanced ability to sense the fatty taste of foods.
Sugar Preference	GLUT2, rs5400	CT or TT	сс	Typical	Your preference for sugar is typical.
Eating Between Meals	MC4R, rs17782313	CC or CT	π	Typical	Your tendency to eat between meals is typical.

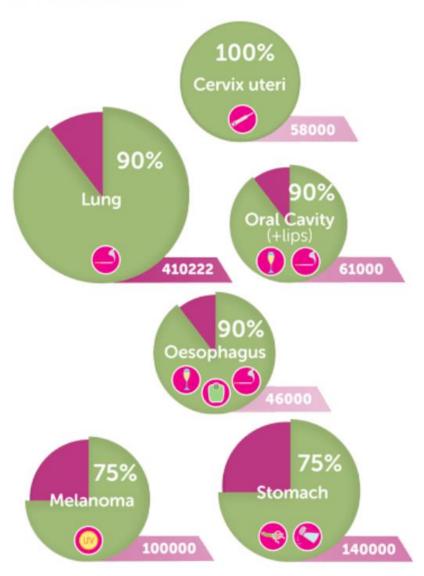
Exercise Physiology, Fitness and Injury Risk


Dietary Component	Gene, rs Number	Risk/ Response Variant	Your Variant	Your Risk/ Response	Recommendations
Motivation to Exercise	BDNF, rs6265	AA or AG	AG	Enhanced	You have an enhanced innate motivation to exercise.
Exercise	CYP19A1, rs2470158		GG	Washad	You have a typical likelihood of engaging in physical
Behavior	LEPR, rs12405556	Algorithm	π	- Typical	activity.
Power and Strength	ACTN3, rs1815739	TC or CC	сс	Ultra	You have a genetic advantage to excel in power sports
	NFIA-AS2, rs1572312	Algorithm	сс		You have a genetic advantage to excel in endurance sports.
	ADRB3, rs4994		тс	Enhanced	
Endurance	NRF2, rs12594956		CA		
	GSTP1, rs1695		AG		
	PGC1a, rs8192678		AA		
Muscle Damage	ACTN3, rs1815739	TC or TT	сс	Typical	Meet general guidelines for warming up and cooling down.
Pain	COMT, rs4680	GG or GA	AA	Typical	You have a typical pain tolerance.
Bone Mass	WNT16, rs2707466	TC or CC	сс	Elevated	Focus on weight-bearing exercises and ensure adequate amounts of bone-building nutrients.
Achilles Tendon Injury	COL5A1, rs12722	CT or TT	cc	Typical	You have a typical risk for Achilles tendon injury.

CANCER CACHEXIA

Definition

- Cachexia is a debilitating wasting syndrome associated with involuntary weight loss and is derived from the Greek words "kakos," meaning bad, and "hexis," meaning condition (Fearon et al. 2012)
- Cachexia occurs in multiple diseases such as chronic kidney, heart and obstructive pulmonary diseases, AIDS, and cancer (Fearon et al. 2013, von Haehling et al. 2016).
- In 1858, the English ophthalmologist John Zachariah first used the term "cancerous cachexia" to describe the wasting syndrome associated with malignancy (Bennani-Baiti & Walsh 2009, Laurence 1858).
- However, a formal definition for cancer-associated cachexia was only recently conceptualized (Fearon et al. 2011) as "a multifactorial syndrome characterized by ongoing loss of skeletal muscle (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment"



--> Implicated in some studies

Pro-inflammatory cytol	tines	
ΤΝFα	Promotes tissue proteolysis and NF-kB activation	Han <i>et al.</i> ¹⁸
	Promotes anorexia and fatigue in cancer patients	Jakubowski et al. ¹⁷
IL-1	Promotes anorexia	Uehara et al. ²³
	Genetic polymorphisms resulting in increased IL-1β	Graziano et al. ²⁵
	levels are marker of poor prognosis	
IL-6	Increased circulating levels are poor prognosis markers	Kuroda et al. ²⁸ Mantovani et al. ⁴
	It can be produced directly by the tumor and trigger	Baltgalvis et al. ²⁶
	cachexia	5
	Increased fat tissue browning	Petruzzelli et al. ¹²⁰
IFNγ	Synergize with TNF α in promoting muscle wasting	Acharyya et al. ²¹

Skeletal muscle w	vasting	
UPR	Upregulation of the ubiquitin-proteasome pathway in cancer model Proteasome and NF-kB inhibitors prevent experimental cancer cachexia UPR activation is required for muscle atrophy	Baracos <i>et al.⁶⁰</i> Chacon-Cabrera <i>et al.⁶⁵</i> Bodine <i>et al.⁵⁹</i>
Authophagy	It is induced in the skeletal muscle of cancer patients	Op den Kamp et al. ⁷⁰ Tardif et al. ⁷¹ Boyer-Guittaut et al. ⁷²
	Promotes muscle wasting during cachexia	Penna et al. ⁶⁸
ActRIIB	Decoy receptor reverses muscle wasting	Zhou <i>et al.</i> ⁵⁰
	Cachectic patients present increased circulating levels of ActRIIB ligand, activin	Loumaye et al. ⁴⁹
	Myostatin (ActRIIB ligand) knock-out prevents experimental cachexia	Gallot et al.48
ipid wasting		
Lipolysis	Adipose Triglyceride Lipase inhibition prevents muscle wasting in experimental cachexia. Cachectic cancer patients present increased lipolytic activity	Das and Hoefler ¹¹⁷

75-100% preventable

Major established modifiable risk/protective factors

Tobacco **Body Fatness UV Radiation (Sunlight** and artificial UV) Physical inactivity Salt consumption Alcohol Human

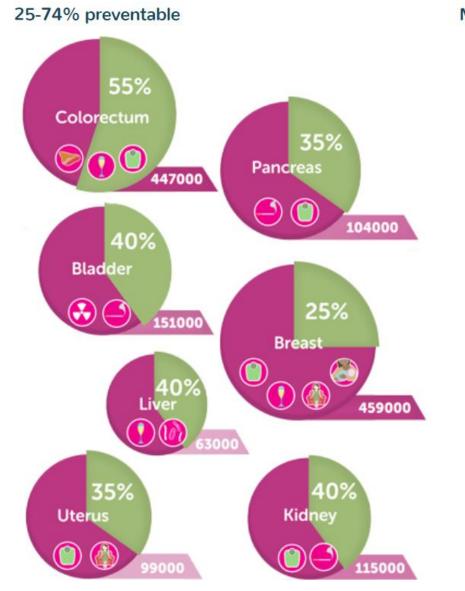
papilloma virus infections

% Preventable (Preventability estimates are for UK)

Prevention intervention / risk factors

Ionising Radiation

Breast-feeding (Protective)


H. pylori infections

Hepatitis B & C infections

Cancer Type

Numbers of cancers in Europe

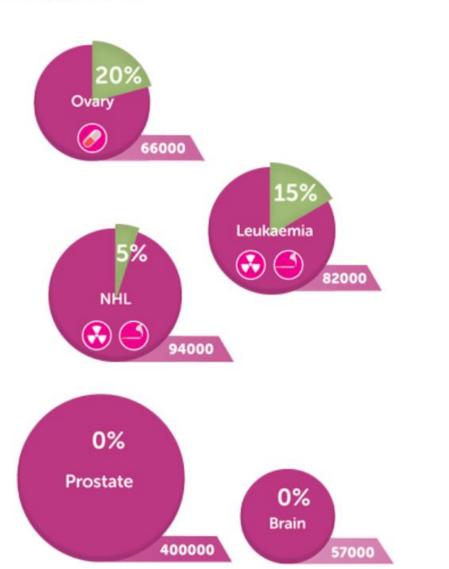
Major established modifiable risk/protective factors

Prevention intervention / risk factors Processed meat

Ionising Radiation

Oral Contraceptives (Protective)

H. pylori


Hepatitis B & C infections

Cancer Type

Numbers of cancers in Europe

H. pylori infections

<25% preventable

Major established modifiable risk/protective factors

Processed meat

Ionising Radiation

Breast-feeding (Protective)

Hepatitis B & C infections

Cancer Type

Numbers of cancers in Europe

IARC Classifications

GROUP	WHAT IT MEANS	EXAMPLES
Group 1 Carcinogenic to Humans	There is sufficient evidence the agent causes cancer in humans.	Solar radiation, processed meats, alcoholic beverages, smoking, asbestos, talc-based baby powder contaminated with asbestos
Group 2A Probably Carcinogenic to Humans	There is sufficient evidence the agent causes cancer in humans.	Anabolic steroids, high temperature frying, HPV, red meat, Roundup (glyphosate), Actos (pioglitazone), N-nitrosodiethylamine (NDMA)
Group 2B Possibly Carcinogenic to Humans	Limited evidence in humans and less than sufficient evidence in animals.	Aloe vera leaf extract, marine diesel fuel, gasoline, engine exhaust, Asian pickled vegetables, progestin, perineal use of talc-based body powder
Group 3 Not Classifiable as to its Carcinogenicity in Humans	Evidence is inadequate in humans and inadequate or limited in animals.	Coffee, low-frequency electric fields, dental materials, ceramic implants, chlorinated drinking water, tea, printing inks

PALIATIVE NUTRITION

Symptoms	Dietary Recommendations
Appetite loss, anorexia	 Minimize eating effort by preferring high energy and protein foods through small and frequent snacks throughout the day. High caloric liquid meals may be useful.
Taste and smell changes	 Adjust diet in accordance with new taste preferences and by avoiding foods that may evoke aversion, such as those with an intense odor (roast meat, fish). Prefer mildly flavored foods. Cold foods are generally less odorous. If the oral mucosa is not sensitive, use salt, herbs, spices, and seasonings.
Nausea and vomiting	 Prefer small and frequent snacks throughout the day (crackers, biscuits) in order to avoid stomach emptying. Take advantage of times when the patient feels less fatigued, or between cycles of chemotherapy. Less odorous and cold foods may be better tolerated.
Oral mucositis, pain	 Prefer soft, creamy, or liquid foods, and avoid hard ones that could damage the oral membrane (nuts, hard fruit, crusts, hard baked goods). Prefer foods at room temperature, and avoid hot dishes and beverages. Ice cold foods and fluids may be pleasant. Avoid extreme tastes, such as spicy and acidic foods, citrus fruits, and very salty products.
Oropharyngeal dysphagia	 Chopping or grinding and moisturizing food (adding cream, gravy, or sauce) allows an adequate thickness to be achieved to facilitate swallowing. Add a thickener to viscous foods in order to prevent choking. Avoid mixed consistency foods due to their high choking risk.
Esophageal dysphagia	 Transit of bolus throughout the esophagus can be favored by chopping finely and dipping foods in liquids (drinks, gravy, or sauces). Chewing well and eating slowly and mindfully are recommended precautions, such as small and frequent meal consumption.
Constipation	 An adequate liquid and fiber intake is aimed at preventing dehydration. Although 30–40 g of fibers per day is the goal for healthy subjects, this result is difficult to achieve in practice. Variate different types of fibers.

Table 1. Dietary recommendations according to nutritional impact symptoms.

Tumor Site	Preferential Nutritional Route	Comment
		Choose access according to the expected AN duration:
Head, neck	EN	 short-term EN: NGT long-term EN: PEG
		(RIG or SG when endoscopic procedure is not feasible) Choose access according to the expected AN duration:
		 short-term EN: NGT long-term EN: PEG
Chest: Esophagus, lung	EN	(RIG or SG when endoscopic procedure is not feasible)
		 Self-expandable metal stents: lower survival benefit than PEG
		Choose access according to the expected AN duration:
	EN/PN	 short-term EN: NJT long-term EN: PEJ
Stomach		(SJ when endoscopic procedure is not feasible)In presence of bowel sub-obstruction/obstruction, peritoneal carcinomatosis, severe gastrointestinal symptoms, or EN intolerance:
		consider PN
Pancreas, biliary tract, colon-rectum,	PN	In presence of bowel sub-obstruction/obstruction, peritoneal carcinomatosis, severe gastrointestinal symptoms:
uterus, ovary, bladder, prostate		consider PN
		Choose access according to the expected AN duration:
		 short-term EN: NGT or NJT (if gastric dysmotility) long-term EN: PEG or PEJ (if gastric dysmotility)
Others malignancies (e.g., brain, breast, blood)	EN/PN	(RIG or SG or SJ when endoscopic procedure is unfeasible)In presence of bowel sub-obstruction/obstruction, peritoneal carcinomatosis, severe gastrointestinal symptoms, or EN intolerance:
		 consider PN

Table 2. Preferential nutritional routes in different cancer sites.

Legend: AN: artificial nutrition; EN: enteral nutrition; PN: parenteral nutrition; NGT: nasogastric tube; NJT: nasojejunal tube; PEG: percutaneous endoscopic gastrostomy; PEJ: percutaneous endoscopic jejunostomy; RIG: radiologically inserted gastrostomy; SG: surgical gastrostomy; SJ: surgical jejunostomy.