

UNIVERSITAS MUHAMMADIYAH JAKARTA FAKULTAS KEDOKTERAN DAN KESEHATAN

SURAT TUGAS

Nomor: 39B/F.7-UMJ/III/2023

Yang bertanda tangan di bawah ini :

Nama	: Dr. dr. Muhammad Fachri, Sp.P, FAPSR, FISR
NID/NIDN	: 20.1096/0308097905
Jabatan	: Dekan Fakultas Kedokteran dan Kesehatan

Dengan ini menugaskan:

Nama	: dr. Rina Nurbani, M.Biomed, Sp.Ak.
NID/NIDN	: 20.860/0325067803

Untuk mengembangkan bahan kuliah Farmakologi Dasar Kebidanan pada Program Studi Kebidanan Program Sarjana

Demikian surat tugas ini diberikan kepada yang bersangkutan untuk dilaksanakan sebagai amanah.

Jakarta, 10 Maret 2023 Dekan Fakultas Kedokteran dan Kesehatan UMJ

Dr. dr. Muhammad Fachri, Sp.P, FAPSR, FISR NID/NIDN : 20.1096/0308097905

Tembusan :

- 1. Wadek I, II
- 2. Bag Keuangan
- 3. Arsip

HORMON

dr. Rina Nurbani, M.Biomed, Sp.Ak

General Concepts

Endocrinology

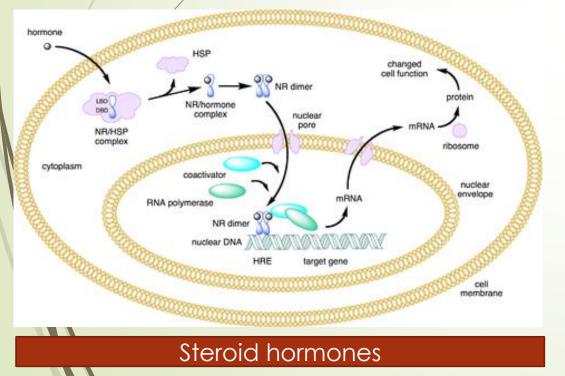
2

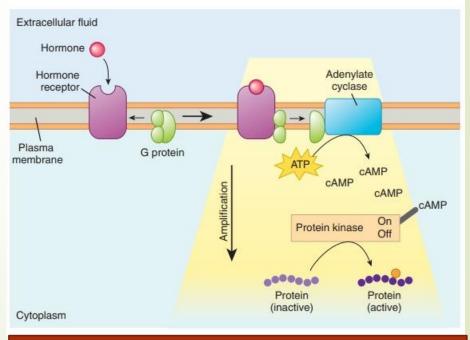
- Biosynthesis of hormones
- Hormones' sites of production
- Sites and mechanisms of hormones' action and interaction

Hormone

Chemical messenger circulates in body fluids and produces specific effects on cells distant from the hormone's point of origin

Functions


- Regulation of energy: storage, production, utilization
- Adaptation to new environments or conditions of stress
- Facilitation of growth and development
- The maturation and function of the reproductive system

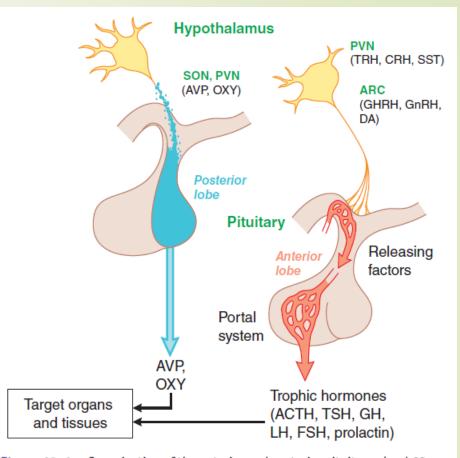

General Concepts

Hormones may be divided into two classes:

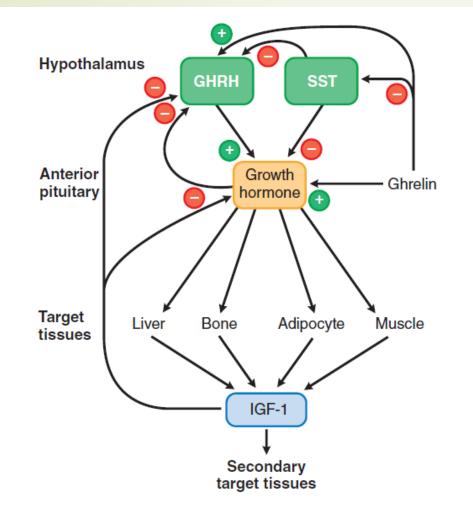
3

- Hormones act predominantly via nuclear receptors -> modulate transcription in target cells (e.g., steroid hormones, thyroid hormones)
- Hormones that typically act via membrane receptors -> rapid effects on signal transduction pathways (e.g., gonadotrophin)

Gonadotropin hormones


The Hypothalamic-Pituitary-Adrenal (HPA) Axis

- Many of the classic endocrine hormones (e.g., cortisol, thyroid hormone, sex steroids, GH) are regulated by interaction among the hypothalamus, anterior pituitary, and endocrine glands (Table 42-1 & Figure 42-1)
 - On stimulation, hypothalamic neurons secret their respective hypothalamic hormones to anterior pituitary gland
 - Hypothalamic hormones bind to membrane receptors on specific pituitary cells → regulate secretion of corresponding pituitary hormones
 - Pituitary hormones "master signals" \rightarrow circulate \rightarrow target endocrine glands or other tissues \rightarrow activate specific receptors \rightarrow stimulate synthesis & secretion \rightarrow target endocrine hormones or exert other tissue-specific effects (feed-forward regulation)
- Negative-feedback regulation: target endocrine hormone causes negativefeedback inhibition of hormone release by acting at the hypothalamus and the pituitary (Figure 42-2)


TABLE 42–1 HORMONES THAT INTEGRATE THE HYPOTHALAMIC-PITUITARY-ENDOCRINE AXIS

HYPOTHALAMIC HORMONE	EFFECT ON PITUITARY TROPHIC (SIGNAL) HORMONE	TARGET HORMONE(S)
Growth hormone-releasing hormone	↑↑ Growth hormone	IGF-1
Somatostatin	\downarrow Growth hormone	
	\downarrow Thyroid-stimulating hormone	
Dopamine	↓ Prolactin	-
Corticotropin-releasing hormone	↑ Corticotropin	Cortisol
Thyrotropin-releasing hormone	\uparrow Thyroid-stimulating hormone	Thyroid hormone
	↑ Prolactin	
Gonadotropin-releasing hormone	↑ Follicle-stimulating hormone	Estrogen (f)
	↑ Luteinizing hormone	Progesterone/estrogen (f)
		Testosterone (m)

f, female; m, male; \uparrow , increased production; \downarrow , decreased production.

Figure 42–1 Organization of the anterior and posterior pituitary gland. Hypothalamic neurons in the supraoptic (SON) and paraventricular (PVN) nuclei synthesize arginine vasopressin (AVP) or oxytocin (OXY). Most of their axons project directly to the posterior pituitary, from which AVP and OXY are secreted into the systemic circulation to regulate their target tissues. Neurons that regulate the anterior lobe cluster in the mediobasal hypothalamus, including the PVH and the arcuate (ARC) nuclei. They secrete hypothalamic releasing hormones, which reach the anterior pituitary via the hypothalamic-adenohypophyseal portal system and stimulate distinct populations of pituitary cells. These cells, in turn, secrete the trophic (signal) hormones, which regulate endocrine organs and other tissues. ARC, arcuate; AVP, arginine vasopressin; OXY, oxytocin; PVN, paraventricular nuclei; SON, supraoptic nuclei; See Abbreviations list for other abbreviations.

Figure 42–2 *Growth hormone secretion and actions.* Two hypothalamic factors, GHRH and SST, stimulate or inhibit the release of GH from the pituitary, respectively. IGF-1, a product of GH action on peripheral tissues, causes negative-feedback inhibition of GH release by acting at the hypothalamus and the pituitary. The actions of GH can be direct or indirect (mediated by IGF-1). See text for discussion of the other agents that modulate GH secretion and of the effects of locally produced IGF-1. Inhibition, –; stimulation, +.

Pituitary Hormones and Their Hypothalamic-Releasing Factors

Classification of the anterior pituitary (adenohypophysis) hormones (Table 42-2)

1. POMC-derived hormones:

7

- > Corticotropin (ACTH) and α -MSH
- 2. Somatotropic family of hormones
 - GH, PRL & placental lactogen
- 3. Glycoprotein hormones
 - TSH (thyrotropin), LH (lutropin), FSH (follitropin), hCG

The Posterior Pituitary Gland's (neurohypophysis) Hormones

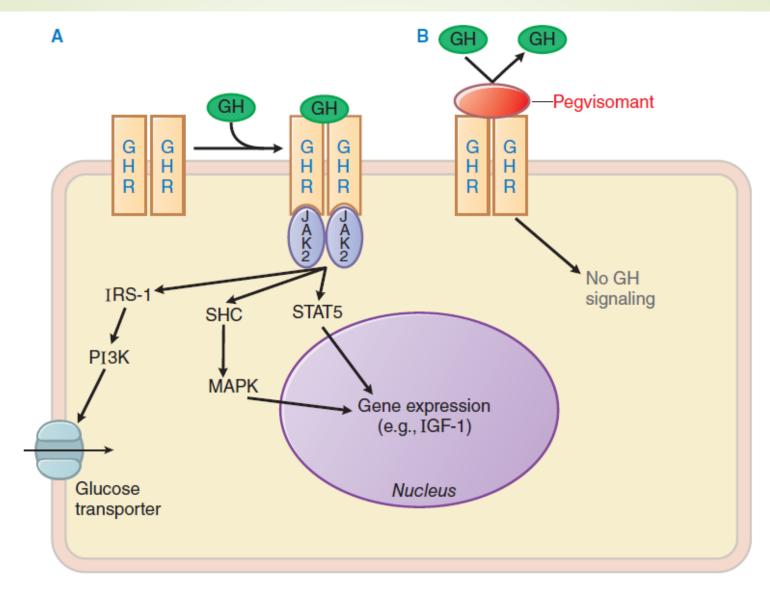
- . Arginine Vasopressin (AVP)
 - Water homeostasis
- . Oxytocin (OXY)
 - Labor and parturition
 - Milk letdown

TABLE 42–2 PROPERTIES OF THE PROTEIN HORMONES OF THE HUMAN ADENOHYPOPHYSIS AND PLACENTA

CLASS Hormone	MASS (daltons)	PEPTIDE CHAINS	AMINO ACID RESIDUES Comments
POMC-derived hormones ^a			These peptides are derived by proteolytic
Corticotropin	4500	1	39 processing of the common precursor,
α-Melanocyte–stimulating hormone	<u>1650</u> ∫		13 POMC.
Somatotropic family of hormones			
Growth hormone	22,000		191 Receptors for these hormones belong to the
Prolactin	23,000	1	199 cytokine superfamily.
Placental lactogen	22,125		190
Glycoprotein hormones			
Luteinizing hormone	29,400		β-121 These are heterodimeric glycoproteins with
Follicle-stimulating hormone	32,600	2	β -111 a common α subunit of 92 amino acids and unique β subunits that determine biological
Human chorionic gonadotropin	38,600		β -145 specificity and $t_{1/2}$.
Thyroid-stimulating hormone	28,000		β-118

^{*a*}See Chapter 46 for further discussion of POMC-derived peptides, including ACTH and α-MSH.

Growth Hormone (GH) and Prolactin (PRL) (1)


Structures of GH and PRL

9

- > GH & PRL are members of the somatotropic hormone family
- GH & PRL act via membrane receptors
- GH is secreted by somatotropes
- PRL is secreted by lactotropes

Molecular and Cellular Bases of GH and PRL Action

- GH and PRL interact with specific membrane receptors on target tissues → effects (Figure 42-5)
- GH receptor activation results in the binding of a single GH to two receptor monomers -> induce a conformational change -> activates downstream signaling
- PRL interact with a cytokine family receptor on target cells through many of the same pathways as the GHR

Figure 42–5 *Mechanisms of GH and PRL action and of GHR antagonism.* A. GH and two GHRs form a ternary complex that induces association and Tyr autophosphorylation of JAK2 and of docking sites on the cytoplasmic tail of GHRs. JAK2 phosphorylates cytoplasmic proteins that activate downstream signaling pathways, including STAT5 and mediators upstream of MAPK, which ultimately modulate gene expression. The structurally related PRL receptor also is a ligand-activated homodimer that recruits the JAK-STAT signaling pathway. GHR also activates IRS-1, which may mediate the increased expression of glucose transporters on the plasma membrane. **B.** Pegvisomant, a recombinant pegylated variant of human GH, is a high-affinity GH antagonist that interferes with GH binding.

Growth Hormone (GH) and Prolactin (PRL) (3)

Physiological Effects of GH and PRL

- GH stimulate: longitudinal growth of bones, preadipocyte to adipocytes
- > GH↑; bone mineral density after epiphyses have closed, muscle mass, GFR
- > GH has potent anti-insulin actions in liver & peripheral tissues (adipocytes & muscle) → ↓glucose utilization & ↑lipolysis
- Most of GH anabolic & growth-promoting effects are mediated indirectly through the induction of IGF-1. IGF-1 interacts with receptors on the cell surface mediate its biological activities.
- PRL effects are limited primarily to the mammary gland: inducing growth & differentiation of ductal & lobuloalveolar epithelia, essential for lactation.
- PRL receptors present in: hypothalamus, liver, adrenal, testes, ovaries, prostate, immune system

Growth Hormone (GH) and Prolactin (PRL) (4)

Indication of GH Treatment

12

- GH deficiency in children
- Children with short stature with adequate GH production, Turner syndrome, chronic renal insufficiency, children born small for gestational age
- AIDS-associated wasting and for malabsorption associated with short-bowel syndrome

Contraindications of GH

- Acute critical illmess: complication after open heart or abdominal surgery, multiple accidental trauma, acute respiratory failure
- Active malignancy

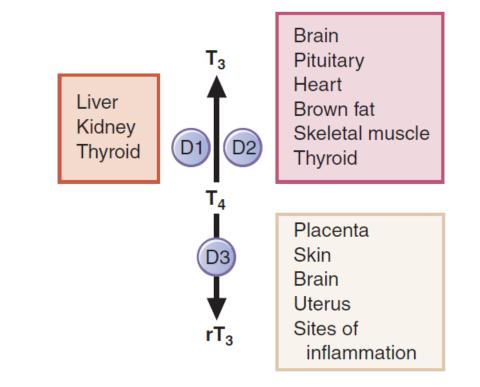
Growth Hormone (GH) and Prolactin (PRL) (5)

13

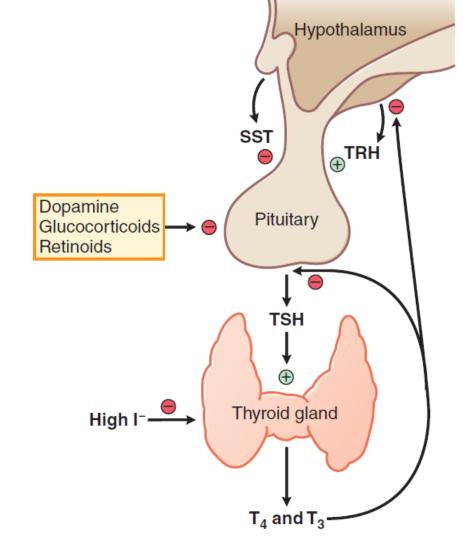
Drug Facts for Your Personal Formulary: Pituitary-Related Drugs

Drugs	Therapeutic Uses	Clinical Pharmacology and Tips
Pituitary Hormones (Rec	ombinant)	
Growth hormone (somatropin)	 Stimulating growth in childhood In GH-deficient adults, replacing GH 	 Given by daily SC injection to stimulate body growth, primarily through stimulation of IGF-1. As growth ceases, test for GH deficiency to determine if GH should be continued into adulthood. Given only to adults with GH deficiency proven by GH stimulation tests or known organic childhood GH deficiency and low IGF-1 levels on testing off GH treatment. Treatment in adults decreases fat mass, increases muscle mass, increases bone mass, and improves quality of life.

Thyroid Hormones


Thyroid follicle produces

14


- Iodothyronine hormones T4 (predominantly, prohormone)
- > T3 the active form (T4 converted in the liver and other tissues)

Thyroid's parafollicular cells (C cells) produce

Calcitonin (indication: hypercalcemia, ostec

Figure 43–4 Peripheral $T4 \rightarrow T3$ conversion by deiodinase enzymes.

Thyroid H

15

Figure 43–6 *Regulation of thyroid hormone secretion.* Myriad neural inputs influence hypothalamic secretion of TRH. TRH stimulates release of TSH from the anterior pituitary; TSH stimulates the synthesis and release of the thyroid hormones T_3 and T_4 . T_3 and T_4 feed back to inhibit the synthesis and release of TRH and TSH. SST can inhibit TRH action, as can dopamine and high concentrations of glucocorticoids. Low levels of I⁻ are required for T_4 synthesis, but high levels inhibit T_4 synthesis and release.

Thyroid Hormones

Clinical Effects of Thyroid Hormones

16

- Growth and Development. In humans, thyroid hormone plays a critical role in brain development (the absence of thyroid hormone during periode of active neurogenesis up to 6 months postpartum->irreversible mental retardation/cretinism)
- > Thermogenic Effects. Heat resulting from vital processes and facultative
- Cardiovascular Effects. Tachycardia, Astroke volume, cardiac hypertrophy, Aperipheral vascular resistance
- Metabolic Effects. Thyroid hormone stimulate expression hepatic LDL receptor (↓ thyroid → ↑ cholesterolemia).

Therapeutic Uses of Thyroid Hormone

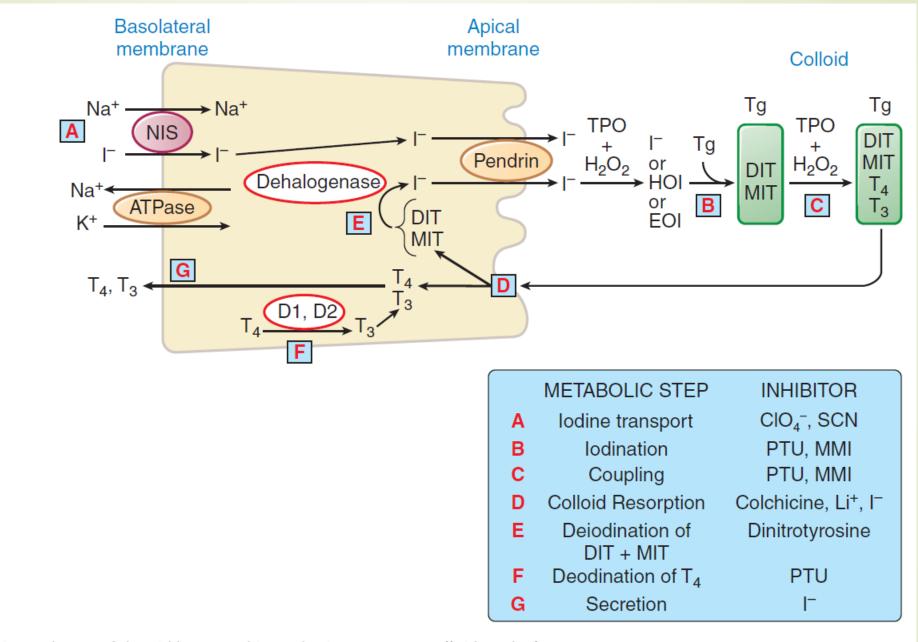
Hormone replacement therapy in patients with hypothyroidism (Levothyroxine)
 TSH suppression therapy in patients with thyroid cancer

Antithyroid Drugs

Types:

17

- > antithyroid drugs, which interfere directly with the synthesis of thyroid hormones
- > Antithyroid drugs, which interfere directly with the synthesis of thyroid hormones
- High concentrations of iodine, which decrease release of thyroid hormones from the gland and also may decrease hormone synthesis
- > Radioactive iodine, which damages the thyroid gland with ionizing radiation


Mechanism of Action

- ontithyroid drugs inhibit the formation of thyroid hormones by interfering with the incorporation of iodine into tyrosyl residues of thyroglobulin; inhibit coupling of these iodotyrosyl residues to form iodothyronines (Figure 43-2)
- **Propylthiouracil (PTU)** partially inhibits peripheral deiodination T4 to T3 (**methimazole** does not have this effect) \rightarrow PTU drug of choice in the treatment of severe hyperthyroid or thyroid storm

Antithyroid Drugs

TABLE 43–3 AGENTS THAT DISRUPT THYROID HORMONE SYNTHESIS, RELEASE, AND METABOLISM

MECHANISM	AGENT		
Iodide uptake	Perchlorate, fluoroborate, thiocyanate, nitrate		
Organification of iodine	Thionamides (propylthiouracil, methimazole, carbimazole), thiocyanate, sulfonamides		
Coupling reaction	Sulfonamides, thionamides		
Hormone release	Li+ salts, iodide		
Peripheral iodothyronine deiodination	Propylthiouracil, amiodarone, oral cholecystographic agents		
Accelerated hepatic metabolism	Phenobarbital, rifampin, carbamazepine, phenytoin, sertraline, bexarotene		

Figure 43–2 *Major pathways of thyroid hormone biosynthesis, storage as colloid, and release.*

Antithyroid Drugs

20

Therapeutic Uses:

- As definitive treatment, to control the disorder in anticipation of a spontaneous remission in Graves disease
- In conjunction with radioactive iodine, to hasten recovery while awaiting the effects of radiation
- > To control the disorder in preparation for surgical treatment
- > Methimazole is drug of choice for Graves disease; less toxic than PTU

	Drug Facts for Your Personal Formulary: Thyroid and Antithyroid Drugs					
	Drugs	Therapeutic Uses	Clinical Pharmacology and Tips			
	Thyroid Hormone Preparations: Replace T ₄ or T ₃ normally produced by the thyroid					
	Levothyroxine (T ₄)	 Hypothyroidism TSH suppression in thyroid cancer 	 Plasma t_{1/2} ~ 1 week Deiodinases convert circulating T₄ to the bioactive hormone T₃ Dosage generally needs to increase during pregnancy Congenital hypothyroidism requires rapid diagnosis and correction to allow normal physical and mental development Overtreatment can lead to osteoporosis and atrial fibrillation 			
	Liothyronine (T_3)	 When rapid onset of action is desired (sometimes for myxedema coma) When rapid termination of action is desired (preparing patients with thyroid cancer for radioiodine therapy) 	 Plasma t_{1/2} ~ 18-24 h Multiple daily doses needed to achieve needed C_{Pss} Levothyroxine (T₄) generally preferred over liothyronine (T₃) for the long-term therapy of hypothyroidism 			
	Desiccated thyroid and T_4 - T_3 mixtures	 Generally not a preferred therapy, although occasional hypothyroid patients say they feel better than when taking levothyroxine 	 Mixture of levothyroxine and liothyronine (2–5:1 by weight) Supplies a relative excess of T₃ compared to normal thyroidal secretion, which is ~ 11:1 T₄ to T₃ by weight No convincing evidence of greater efficacy than levothyroxine (T₄ alone) 			
/	Antithyroid Drugs: Thionamides: Interfere with incorporation of iodine into tyrosyl residues and inhibit iodotyrosyl-coupling reactions					
	Methimazole	Reduce thyroid hormone production	 Carbimazole (available in Europe) converted to methimazole after absorption Long intrathyroidal t_{1/2} allows once-daily dosing for most patients Preferred antithyroid drug Do not use in first trimester of pregnancy due to embryopathy 			
	Propylthiouracil	 Reduce thyroid hormone production May also reduce T₄ to T₃ conversion 	 Major concern is liver toxicity; rare but more commonly seen in children and pregnancy Only indications are for thyroid storm due to action on reducing T₄ to T₃ conversion and in the first trimester of pregnancy 			
	Antithyroid Drugs: lo	nic Inhibitors: lodine uptake by antagonizin	g the sodium-iodide symporter			
	Perchlorate	 Primarily used to enhance the response to thioamides in refractory Graves disease (e.g., that associated with amiodarone) 	Not available commercially; must be specialty compounded			

	Drug Facts for Your Personal Formulary: Thyroid and Antithyroid Drugs				
	Drugs Therapeutic Uses		Clinical Pharmacology and Tips		
	Antithyroid Drugs: lo	dide: Acute reduction in thyroid hormone			
	Lugol solution	 Acutely reduce the secretion and synthesis of thyroid hormone 	 "Escape" from thyroid inhibition after 7–10 days Strictly contraindicated in pregnancy 		
	KISS: potassium iodide saturated solution (or SSKI)	 Acutely reduce the secretion and synthesis of thyroid hormone 	 "Escape" from thyroid inhibition after 7–10 days Strictly contraindicated in pregnancy 		
	Antithyroid Drugs: Ra	adioactive lodine: Used to destroy hyperfund	ctioning thyroid tissue		
/	131	 Effective for permanent treatment of Graves disease and toxic nodule or toxic goiter Destruction of iodide-avid thyroid cancer 	 Highly effective for permanent cure to hyperthyroidism Effective treatment of hyperthyroidism usually results in permanent hypothyroidism and lifelong requirement for levothyroxine replacement Absolutely contraindicated in pregnancy Treatment of thyroid cancer requires TSH stimulation (endogenous or exogenous) 		
	Recombinant Human	TSH Agonist for the TSH Receptor			
/	Thyrotropin alpha	 Stimulate radioiodine uptake and thyroglobulin release in patients with thyroid cancer after thyroidectomy Prepare patients for radioiodine ablation of thyroid remnants after thyroidectomy for thyroid cancer 	 Allows assessment of residual or recurrent thyroid cancer without stopping levothyroxine and becoming clinically hypothyroid Allows radioiodine therapy of thyroid remnants without stopping levothyroxine and becoming clinically hypothyroid 		
	Thyroid Cancer Chem	otherapeutics: Tyrosine kinase inhibitors			
	Sorafenib Lenvatinib	Radioiodine-resistant, progressive papillary, or follicular thyroid cancer	 Response not predicted by presence or absence of specific oncogene mutations Lack of response to one kinase inhibitor does not necessarily predict lack of response to others 		
-	Vandetanib Cabozantinib	Progressive medullary thyroid cancer	 Can be used in hereditary or sporadic medullary thyroid cancer Responses may be seen in patients with or without <i>RET</i> gene mutations 		

Estrogens

23

Chemistry and Synthesis:

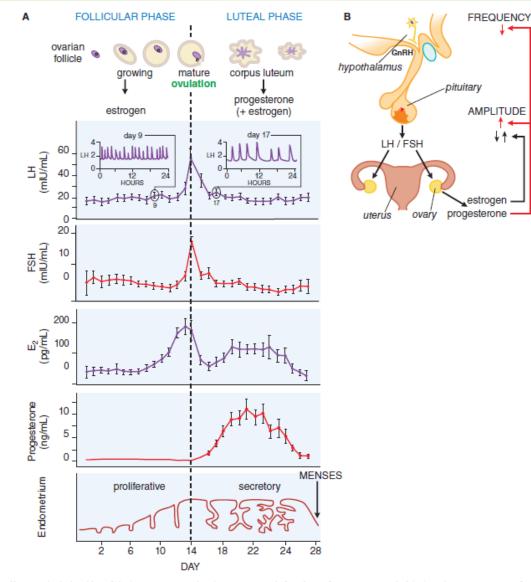
- Many steroidal and nonsteroidal compounds possess estrogenic activity (Table 44-1)
- Steroidal estrogens arise from androstenedione or testosterone.
- The ovaries are principle source of circulating estrogen in pre-menopausal women, with estradiol the main secretory product
- In postmenopausal women, the principal source of circulating estrogen is aclipose tissue stroma
- In men, estrogen are produced by the testes, but extragonadal production (androstenedione & dehydroepiandrosterone) accounts for most circulating estrogens
- Estrogen may be locally produced e.g. breast cancer, placenta

STEROIDAL ESTROGENS				NONSTEROIDAL COMPOUNDS WITH ESTROGENIC ACTIVITY
	R ₁ 0 ² A 45	$ \begin{array}{c} $		Diethylstilbestrol
Derivative	R_{1}	R_{2}	R ₃	CH ₃
Estradiol	—H	—H	—H	Bisphenol A
Estradiol valerate	—Н	—Н	O ∥ —C(CH₂)₃CH₃	HO-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
Ethinyl estradiol	—Н	—C≡CH	—Н	CH ₃
Mestranol	-CH ₃	—C≡CH	—Н	Genistein
Estrone sulfate	—SO₃H	a	=O ^a	HOOO
Equilin ^b	—Н	a	=O ^a	ОН О О

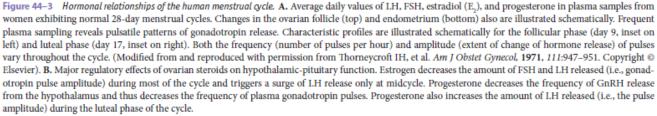
^aDesignates C17 Ketone. ^bAlso contains 7, 8 double bond.

Estrogens

25


Physiological Actions:

- Responsible for pubertal changes in girls & secondary sexual characteristics
- ➤ In boys, estrogen deficiency diminishes pubertal growth spurt and delays skeletal maturation & epiphyseal closure. Est deficiency in men →↑ gonadotropins, macroorchidism, ↑testosterone, fertility in some individuals


Control of the menstrual cycle

The cyclical changes in estrogen and progesterone production by the ovaries regulate corresponding events in the fallopian tubes, uterus, cervix, and vagina prepare the uterus for implantation pregnancy. If pregnancy does not occur, the endometrium is shed as the menstrual discharge

Metabolic effects. Bone remodeling (\uparrow osteoblasts, \downarrow osteoclasts); bone growth & epiphyseal closure; \uparrow HDL, \downarrow LDL; vasodilation, \downarrow atherogenesis

+

Estrogens

27

Mechanism of Action:

- Estrogens exert their effects by interaction with receptors that are members of the superfamily of nuclear receptors
- Estrogen receptor a is expressed most abundantly in the female reproductive tract—especially the uterus, vagina, and ovaries—as well as in the mammary gland, the hypothalamus, endothelial cells, and vascular smooth muscle.

Selective ER modulators (SERMs): Tamoxifen, Raloxifene, Toremifene

- Compound with tissue-selective actions
- Produce beneficial estrogenic action in certain tissue (bone, brain, liver) during post-Menopausal Hormone Therapy (MHT) but antagonist activity in tissue breast, endometrium, where estrogenic actions (carcinogenesis) might be deleterious
- osteoporosis

Progestins

28

Chemistry, **Biosynthesis**, Secretion

- Compounds with biological activities similar to progesterone: progestin, progestational agents, progestagens
- Progesterone is secreted by the ovary, mainly from the corpus luteum, during 2ng half of the menstrual cycle.
- LH acting via its G protein-coupled receptor, stimulates progesterone secretion during the normal cycle
- After fertilization, trophoblast secretes hCG into maternal circulation, which stimulates LH receptor to sustain corpus luteum & maintain progesterone prod.
- During 2ng and 3rd month of pregnancy, placenta begins to secrete estrogen and progesterone with fetal adrenal glands
- Est and prog continue to be secreted in large amounts by placenta up to delivery

Progestins

29

Physiologic Actions

- Decreasing frequency OF GnRH pulses
- Progesterone is secreted by the ovary, mainly from the corpus luteum, during 2ng half of the menstrual cycle.
- Prog decreases est-driven endometrial proliferation -> development a secretory endometrium
- Development of mammary gland
- Prog may be responsible for increased risk of breast cancer associated with estprog use in postmenopausal women
- Increase basal body temperature 0,6 C at midcycle
- Depressant and hypnotic action in the CNS
- Increase basal insulin levels
- Increase LDL, decrease HDL

Progestins

30

Mechanism of Action

- > Biological activities of PR-A and PR-B are distinc and depend on the target gene.
- In most cells, PR-B mediates stimulatory activities of prog; PR-A strongly inhibits action PR-B
- PR-A responsible mediating effects in the ovaries, uterine; PR-B effects in mammary gland

Therapeutic Uses of Estrogens and Progestins

- Hørmonal contraception
- Postcoital contraception

Androgens

31

Testosterone and Other Androgens

- > In men, testosterone is the principal secreted androgen
- In women, testosterone also is the principal androgen and is synthesized in the corpus luteum and the adrenal cortex
- Testosterone precursors androstenedione and DHEA are weak androgens that can be converted peripherally to testosterone

Pengertian

Hormon steroid yang merangsang atau mengontrol perkembangan dan pemeliharaan karateristik laki-laki dengan berikatan dengan reseptor androgen yang mendukung aktifitas organ seks pria dan pertumbuhan karakteristik seks sekunder laki2

Androgen merupakan steroid anabolik

Androgens

32

Fungsi

- Perkembangan testis sejak embrio
- Pembentukan sperma: di testis melalui proses spermatogenesis
- Prekursor estrogen dan progesterone
- Merangsang pertumbuhan rambut pada laki-laki dan perempuan
- Perkembangan masa otot
- Ciri seks sekunder pria: tumbuh jakun, kumis, jenggot, rambut dada, area vital; pertumbuhan masa otot, suara membesar
- Mengatur libido seks pada laki-laki dan perempuan

Androgens

33

Mekanisme kerja

- Di prostat dan vesikula seminalis, 90% testosterone diubah oleh enzim 5 αreductase menjadi dihidrotestosteron (DHT) yang lebih akif
- ➤ Testosteron dan DHT berikatan dengan reseptor di sitoplasma →translokasi ke nukleus→ spesifik binding site→ ↑sintesis protein

Indikasi dan Kontraindikasi

- Alkil androgen: edema, angioneurotik herediter terapi jangka pendek penyakit berat
- Kontraindikasi: wanita hamil, bayi dan anak
- Hati2 pada pasin penyakit jantung karena risiko edema

Goodman & Gilman's. Manual of pharmacology and therapeutics.17th ed