KEPUTUSAN DEKAN
Nomor: 68 Tahun 2023

Tentang:

PELAKSANAAN PENELITIAN DAN PENGABDIAN MASYARAKAT DALAM UNSUR PENELITIAN DOSEN TETAP FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JAKARTA SEMESTER GENAP 2022/2023

Dekan Fakultas Teknik Universitas Muhammadiyah Jakarta

Menimbang : a. bahwa penelitian dan pengabdian masyarakat dosen tetap Fakultas Teknik Universitas Muhammadiyah Jakarta adalah merupakan salah satu unsur pelaksanaan catur dharma perguruan tinggi.
b. bahwa berdasarkan butir a tersebut di atas, pelaksanaan penelitian dan pengabdian masyarakat dosen tetap harus mengacu kepada Panduan Pengisian Beban Kinerja Dosen (BKD) LLDIKTI Wilayah III.
c. bahwa untuk itu perlu ditetapkan dengan Keputusan Dekan.

Mengingat : 1. Undang-undang Republik Indonesia, Nomor: 20 tahun 2003 tentang Sistem Pendidikan Nasional;
2. Undang-undang Nomor: 12 Tahun 2012 tanggal 10 Agustus 2012 tentang Pendidikan Tinggi;
3. Peraturan Pemerintah Nomor: 04 Tahun 2014 tentang Penyelenggaraan Pendidikan Tinggi dan Pengelolaan Perguruan Tinggi;
5. Peraturan Menteri Pendidikan dan Kebudayaan Republik Indoensia Nomor: 3 Tahun 2020 tentang Standar Nasional Pendidikan Tinggi;
6. Pedoman Pimpinan Pusat Muhammadiyah Nomor: 02/PED/I.0/B/2012 tanggal 16 April 2012 tentang Perguruan Tinggi Muhammadiyah;
7. Statuta Universitas Muhammadiyah Jakarta Tahun 2019;

MEMUTUSKAN:

Pertama: Ketentuan Unsur Penelitian dan Pengabdian Masyarakat sebagaimana dimaksud dalam keputusan ini sesuai dengan Panduan Pengisian Beban Kinerja Dosen (BKD) LLDIKTI Wilayah III.

Kedua: Salinan keputusan ini disampaikan kepada yang bersangkutan dan pihak-pihak terkait untuk diketahui, dipedomani, dan dapat dilaksanakan dengan sebaik-baiknya sebagai amanah.

Ketiga: Keputusan ini berlaku sejak tanggal ditetapkan dan apabila di kemudian hari terdapat kekeliruan, akan diadakan perbaikan sebagaimana mestinya.

Ditetapkan di: Jakarta
Pada tanggal: 11 Sya’ban 1444
03 Maret 2023

NID: 20.773.
Letter of Acceptance

Dear Author : Nurlaelah

Manuscript ID: ETJV08I07-33

Paper Title: "ANALYSIS OF NVA WASTE IN PT "XYZ" WAREHOUSE BUILDING PROJECT, WEST JAVA, INDONESIA"

We are pleased to accept the same for publication in ETJ. Please send the scanned Copyright form (Can be downloaded from website) along with bank receipt of an online maintenance. Article will be online within 24 working hours after receiving all the necessary documents.

Payment details: 30USD (For entire research paper for All Author).

You can pay by Credit Card or Debit card or net banking by using link

Payment Link: http://everant.org/index.php/etj/mod

In case of any query please do not hesitate to contact us. Early reply is appreciated. Sincerely,

E-mail ID: journaletj@gmail.com

With Regards,

Journal Manager
Engineering and Technology Journal
Website: http://everant.org/index.php/etj
I/we certify that I/we have participated sufficiently in the intellectual content, conception and design of this work or the analysis and interpretation of the data (when applicable), as well as the writing of the manuscript, to take public responsibility for it and have agreed to have my/our name listed as a contributor. I/we believe the manuscript represents valid work. Neither this manuscript nor one with substantially similar content under my/our authorship has been published or is being considered for publication elsewhere, except as described in the covering letter. I/we certify that all the data collected during the study is presented in this manuscript and no data from the study has been or will be published separately. I/we attest that, if requested by the editors, I/we will provide the data/information or will cooperate fully in obtaining and providing the data/information on which the manuscript is based, for examination by the editors or their assignees. Financial interests, direct or indirect, that exist or may be perceived to exist for individual contributors in connection with the content of this paper have been disclosed in the cover letter. Sources of outside support of the project are named in the cover letter.

I/We hereby transfer(s), assign(s), or otherwise convey(s) all copyright ownership, including any and all rights incidental thereto, exclusively to the Journal, in the event that such work is published by the Journal. The Journal shall own the work, including 1) copyright; 2) the right to grant permission to republish the article in whole or in part, with or without fee; 3) the right to produce preprints or reprints and translate into languages other than English for sale or free distribution; and 4) the right to republish the work in a collection of articles in any other mechanical or electronic format.

We give the rights to the corresponding author to make necessary changes as per the request of the journal, do the rest of the correspondence on our behalf and he/she will act as the guarantor for the manuscript on our behalf.

All persons who have made substantial contributions to the work reported in the manuscript, but who are not contributors, are named in the Acknowledgment and have given me/us their written permission to be named. If I/we do not include an Acknowledgment that means I/we have not received substantial contributions from non-contributors and no contributor has been omitted.

Corresponding Author: Nurlaelah
Address: Jl. Kemang Utara I A No. 18 A, RT 5 RW 1, Bangka, Mampang Prapatan, South Jakarta
Country: Indonesia Zip /Pin Code: +62

Author’s Name: E-mail:
1. Nurlaelah 1. nurlaelah@umj.ac.id
2. ………………………………………………………………………………… 2. …………………………………………………………………………………
3. ………………………………………………………………………………… 3. …………………………………………………………………………………
4. ………………………………………………………………………………… 4. …………………………………………………………………………………
5. ………………………………………………………………………………… 5. …………………………………………………………………………………

The corresponding author must included a Conflict of Interest Statement on behalf of all the authors at the end of their article. If no Conflict of Interest is declared this must be stated also.
Analysis of NVA Waste in PT "XYZ" Warehouse Building Project, West Java, Indonesia

Nurlaelah
Muhammadiyah Jakarta University

ABSTRACT: Currently, construction waste remains a major concern for researchers and construction practitioners. Various efforts have been made to minimize waste during construction, aiming not only for the benefit of owners and contractors but also for the sustainable environment. Therefore, this research attempts to discuss construction waste related to Non-Value Added Activities (NVA) waste in the PT "XYZ" warehouse building project. The final results indicate the presence of 7 types of NVA waste along with various examples, and the most frequent occurrence is waste related to waiting.

KEY WORD: Construction Project, Construction Waste, Non Value Added

INTRODUCTION
The manufacturing sector is characterized by waste. Waste by definition is anything that does not add value or that customers do not want since it will detract from the desired end result. Waste is any activity that does not add value to the process of turning inputs into outputs along the value stream (processes for creating, producing, and delivering goods and or services to market), according to Vincent Gaspersz in his book "Lean Six Sigma" published in 2007. As time goes on, the construction sector, which seeks to improve the outcomes of construction projects, is also included in this waste discussion. This is conceivable because there are still many construction projects that, both in terms of the final product (such as buildings, roads, bridges, etc.) and the construction process, do not meet the needs of the owner or user. Problems that frequently arise in construction projects include a number of building items that were affected (defective), failed (collapsed), delays in completion of work, protracted permitting process, and final conflict (dispute) between the owner and the contractor.

Koskela (2013) defined waste in the construction sector as anything that results in inefficiencies in the use of significant quantities of tools, materials, labor, or money required to construct a building. Furthermore, it was explained that waste in the construction sector is primarily classified into two categories: activity waste, or non-value-added activities (NVAs), and material waste, which takes the form of building trash. As a result of its connection to the three (three) primary limitations of construction projects, namely Cost, Quality, and Time, the category of activity waste is waste related to project performance. A construction project should ideally be produced with cheap cost (low budget), good quality, and a quick turnaround time, or at the at least, on schedule. It might be said that a construction project is not performing successfully if these three key restrictions are not met. The warehouse building project at PT "XYZ" in the Cikarang district of West Java was one of the construction projects where the three constraints (Cost, Quality, and Time) were not met. This undertaking is a warehouse for the storage of processed foods and fresh foods like meat and chicken. This project ran into a number of issues while it was being completed, which led to cost and time overruns that cost both the contractor and the owner money. Preliminary information suggests that there was a significant amount of activity waste (NVA) during the construction process. Examples include the owner's selection of the contractor and subcontractor, the difficulty obtaining supplies from the building material stores, the length of the permit process, and others. To enable contractors to input and take preventative action, it is therefore vital to identify and evaluate the NVA waste that happens in every building project, particularly in the Building Project at PT "XYZ."

DEFINITION AND TYPES OF CONSTRUCTION WASTE
In general, construction waste is divided into two main parts as expressed by Nagapan and Ismail (2011): 1. Physical waste and 2. Non-physical waste.

1. Physical waste
Construction projects generate a significant amount of solid waste. According to Bossink and Brouwer (1996), approximately 15 to 30% of the solid waste disposed of in landfills is construction waste. This waste comes from both...
new building constructions and modifications to existing structures. A survey conducted by Wilson (2001) in 11 major European cities revealed that more than half of the managed solid waste originates from construction waste. Similar findings were reported by Ekayanake (2000) in his research, stating that the amount of solid waste produced from construction projects in the Netherlands is about 10% of the total waste generated.

According to Yahya and Boussabaine (2004), construction waste can be defined as materials that are not used and are a byproduct of the construction process. On the other hand, Defatta et al. (2003) and Hao et al. (2007) explain that construction and demolition waste refer to the residual materials arising from various activities such as construction, renovation, demolition, including excavation or earthworks, civil and building construction, site clearance, demolition activities, road works, and building renovations. This waste can consist of solid waste, including concrete debris, various types of bricks and blocks, various types of tiles, reinforcing steel, wood, plastic and paper materials, as well as gravel and soil. Research also identifies physical construction waste as the source of waste that is typically found at construction project sites.

2. Non Physical Waste

On the other hand, there are also types of waste known as Non-Value Added Activities (NVA). The term "not adding value" is used to distinguish physical construction waste found at project sites from other types of waste that occur during the construction process. This type of waste is also referred to by researchers as non-physical waste, non-tangible waste, or indirect waste.

According to Kutika, Saerang, & Gerunga (2018), NVA (Non-Value-Added) refers to activities that do not provide added value or are not efficient, and thus, can be improved to enhance value.

Previously, according to Womack and Jones (1996), waste can be defined as human actions that utilize resources without creating added value, such as errors requiring correction, production of unwanted goods, unnecessary process steps, unnecessary employee movements, and waiting for others to complete preceding activities. Upon further examination, it can be concluded that the viewpoint of Womack and Jones refers to non-physical waste (NVA).

Meanwhile, Koskela (1992) in the research by Formoso et al. (1999) explains NVA (Non-Value-Added) waste as any form of inefficiency that results in the use of equipment, materials, labor, or capital in larger quantities than necessary. In other words, waste in the construction industry is not only related to the quantity of materials wasted on-site but also encompasses various activities such as overproduction, waiting time, material handling, processing, inventory, and worker movements. Consistent with previous researchers, Alwi et al. (2002) interpret waste as not limited to material waste in the construction process but also includes other non-value-added activities, such as rework, waiting time, and delays.

In 2013, Koskela proposed the possibility of adopting the seven main wastes from The Toyota Way, which were introduced by Ohno and Shingo, in the context of the construction industry. These wastes are Overproduction, Inventory, Defects, Motion, Transportation, Processing, and Waiting.

In its development, the terminology of the seven wastes must be identified and defined according to the situation and conditions of each construction project. Several researchers have previously conducted studies related to the intended definitions. For example, Thanh (2011) provides a detailed explanation of his opinion as shown in the following Table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Waste from defects</th>
<th>Definition</th>
<th>Related Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waste from defects</td>
<td>A defect is a shortfall in performance which manifests itself once the building is operational.</td>
<td>Value generation management, tasks management</td>
</tr>
<tr>
<td>2</td>
<td>Waste from delays</td>
<td>Delay is an act or event which extends required time to perform or complete work of the contract manifests itself as additional days of work.</td>
<td>Workflows management</td>
</tr>
<tr>
<td>3</td>
<td>Waste from overproduction</td>
<td>It is production of products earlier than specified by customers or greater quantity than required.</td>
<td>Tasks management, workflows management</td>
</tr>
<tr>
<td>4</td>
<td>Waste from overprocessing</td>
<td>It is arrangement or planning some unnecessary processes in work flow.</td>
<td>Workflows management</td>
</tr>
</tbody>
</table>
From the above waste definition, several types of NVA (Non-Value-Added) can be mentioned here based on various researchers. Furthermore, Alwi et al. (2002) also explained other types of NVA (Non-Value-Added) activities, which include: 1) repair, 2) waiting time, 3) materials, 4) human resources, and 5) operational (operations). Haggard, et al. (2005) list six different types of supply chain inefficiency along with the following types of construction waste: 1) unnecessary material handling, 2) rework, 3) design flaws, 4) conflicts between buyers (conflict between buyers), 5) conflicts between contractors (conflict between contractors), and 6) ineffective supply chain. According to Senaratne et al. (2008), there are four different categories of construction waste: extra materials, delays, rework, and faults. According to Forbes et al. (2011), there are nine different categories of construction waste, including: 1) overproduction, 2) idle time, 3) transportation, 4) processing, 5) inventory, 6) wasted operator motion, 7) producing defective goods, 8) satisfaction (making do), and 9) not talking and not listening. While waiting time and transportation time are the two categories of construction waste that Farrar, et al. (2004) characterize as being related to time. Meanwhile Koskela, et al. (2002) go into greater depth about the many categories of building waste, citing: 1. A lack of resources or their unavailability, which causes delays. 2. Extraneous steps and tasks. 3. Unnecessary personnel, equipment, and material moves. 4. Having too many resources to complete a task (having too many resources). 5. Material inventories and associated statements regarding material conformance. 6. Excessive output brought on by the misuse of resources. 7. Lack of production but increased use of resources (production issues, resulting in adjustments, and increased use of resources as a result)

CAUSES OF WASTE OCCURANCE
People, professional management, design and documentation, materials, activities on building sites, and physical factors can all be characterized as causes of waste (Alwi et al., 2002). Inadequate trade skills, unequal labor distribution, incomplete inspection of work, a lack of qualified supervisors and foremen, subcontractors with insufficient abilities, and inexperienced inspectors are some of the causes of human-related waste. These issues seem to be particularly severe in Africa. South. Poor planning and scheduling, poor information management, poor coordination in the construction supply chain, and sluggish decision-making procedures are all sources of waste connected with professional management. Poor site documentation, confusing requirements, ambiguous site drawings, a long response time to information requests, design revisions, and subpar design are all examples of sources of waste in the design and documentation process. Non-compliance with quality standards, delays in material delivery, inefficient material handling, and the use of improper resources are all sources of material waste. While deficient construction procedures, old equipment, equipment shortages, outdated site layouts, and an excessive reliance on overtime to complete work on schedule are among the sources of waste associated with site operations. In the meantime, design, procurement, material handling, site operations, and other related construction activities can be classified as the causes of construction waste in terms of material or time (Polat et al., 2004).

RESEARCH METHOD
This study was conducted on the warehouse building project of PT "XYZ" located at Jl. Sungkai 2, Cikarang Pusat, Bekasi, West Java, Indonesia, through 2 (two) main stages as shown in Figure 1 below:
1. The limited interview (brainstorming) aims to explain definitions related to waste NVA terms that have been formulated through literature studies. Additionally, data related to examples of NVA (Non-Value-Added) waste that occurred in the "XYZ" warehouse project were also collected.

2. Questionnaire, is an activity to find data related to the frequency of occurrence of waste NVA during the construction process. Data analysis was carried out using SPSS statistics to find out how often NVA activity waste occurs in the PT "XYZ" warehouse building project.

FINDINGS AND DISCUSSION
Following the research stages mentioned above, this study was conducted through two phases: 1. Limited interviews (brainstorming) and 2. Questionnaires provided to research respondents. The respondents in this study consisted of 15 individuals directly involved in the construction process of the warehouse building, including 4 Contractor Heads, 7 foremen, and 4 field supervisors.

1. **Examples of NVA (Non-Value-Added) waste that occurred**

Based on the results of limited interviews (brainstorming) and direct observations on-site, the following examples of NVA (Non-Value-Added) waste are presented in Table 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Waste NVA</th>
<th>Examples of waste NVA</th>
</tr>
</thead>
</table>
| 1 | Overproduction (Producing in larger and faster quantities than needed). | • Many wasted iron pieces for the construction of beams, poles/columns.
• Wasted cement, sand, and gravel mix for the foundation, poles, and beams. |
| 2 | Inventory (Excess testing, equipment, data storage, process inventory, and material and supplies more than needed). | • Accumulation of excavated soil in some corners, causing the project site to be untidy.
• Piling up construction materials in the warehouse without proper organization. |
| 3 | Defect (Products produced not according to specifications). | • Some parts of the building are damaged, such as cracked walls, peeling paint, and others.
• Cracked and lifted floor tiles in several locations.
• Wooden and aluminum doors and windows are dragging.
• Damaged door and window accessories. |
| 4 | Motion (Unnecessary movement of operators from one task to another, or from one place to another). | • Endless meetings by owner and contractor.
• Errors and delays in ordering materials from the supplier.
• Workers taking excessively long breaks.
• Workers using mobile phones excessively during work. |
| 5 | Transportation (Unnecessary movement of materials or equipment). | • The transfer of excavated soil to another location is hindered due to insufficient equipment.
• The transfer of foundation and beam materials (blocks, cement, sand, gravel, iron) is hindered due to inadequate equipment and lack of logistics personnel managing the inflow and outflow of materials in the warehouse. |
With the occurrence of various types of NVA (Non-Value-Added) waste in this project, it is essential to take elimination and prevention measures. As stated by Ismail, et al. (2016), waste can directly impact the construction process and projects but can be avoided by executing the work properly, maintaining strict monitoring, control, and planning. Everyone involved in the construction process has the potential to generate waste as they influence the process. Therefore, (Tersine, 2004) explained waste must be removed from a construction process as it can proliferate and multiply if left unaddressed, leading to reduced operational effectiveness. The elimination of waste can enhance the company’s profits by reducing resource utilization and improve overall performance and quality.

2. The frequency of NVA (Non-Value-Added) waste occurrence.

Based on the previously outlined definition of the 7 NVA (Non-Value-Added) wastes and explanations provided to the 15 research respondents, the following 7 questions were formulated regarding the frequency of NVA waste occurrences in this project. Each question has a rating scale consisting of 1 (Always), 2 (Often), 3 (Seldom), and 4 (Never).

The results of the statistical analysis using SPSS are as follows:

1. Question 1

 How often do you encounter overproduction in this project?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>8</td>
<td>53.3</td>
<td>53.3</td>
</tr>
<tr>
<td>Often</td>
<td>6</td>
<td>40.0</td>
<td>93.3</td>
</tr>
<tr>
<td>Seldom</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

2. Question 2

 How frequently do you observe excess inventory of materials or supplies?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>7</td>
<td>46.7</td>
<td>46.7</td>
</tr>
<tr>
<td>Often</td>
<td>7</td>
<td>46.7</td>
<td>93.3</td>
</tr>
<tr>
<td>Seldom</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

3. Question 3

 How often do you notice unnecessary movement of workers or equipment between tasks or locations?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>2</td>
<td>13.3</td>
<td>13.3</td>
</tr>
</tbody>
</table>
Analysis of NVA Waste in PT "XYZ" Warehouse Building Project, West Java, Indonesia

4. Question 4

How frequently do you come across defects in the final products?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>3</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Often</td>
<td>9</td>
<td>60.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Seldom</td>
<td>2</td>
<td>13.3</td>
<td>93.3</td>
</tr>
<tr>
<td>Never</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

5. Question 5

How often do you witness excess waiting time for instructions or materials?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>2</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Often</td>
<td>6</td>
<td>40.0</td>
<td>53.3</td>
</tr>
<tr>
<td>Seldom</td>
<td>6</td>
<td>40.0</td>
<td>93.3</td>
</tr>
<tr>
<td>Always</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

6. Question 6

How frequently do you observe non-value-added processing activities in the production process?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>1</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Often</td>
<td>13</td>
<td>86.7</td>
<td>93.3</td>
</tr>
<tr>
<td>Seldom</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

7. Question 7

How often do you encounter unnecessary transportation of materials or equipment?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Often</td>
<td>14</td>
<td>93.3</td>
<td>93.3</td>
</tr>
<tr>
<td>Seldom</td>
<td>1</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Graphically, the average responses of the respondents are as follows:
Analysis of NVA Waste in PT "XYZ" Warehouse Building Project, West Java, Indonesia

In Figure 1, it is evident that for question 5 (How often do you witness excess waiting time for instructions or materials?), it ranks first with a score of 2.4. This means that this NVA waste should be the primary concern for both the contractor and the owner during the construction process. It is followed by questions 4 and 7 (How frequently do you come across defects in the final products? And How often do you encounter unnecessary transportation of materials or equipment?), respectively. Next is question 6 (2.0), followed by question 3 (1.9), question 2 (1.6), and question 1 (1.53). However, overall, it can be observed that the average responses are between 1.5 to 2.4, indicating that this NVA waste occurs "Often." Therefore, this can serve as valuable input for both the contractor and the owner of the warehouse project at PT "XYZ."

CONCLUSION

Based on the frequency of NVA waste occurrences above, it can be concluded that for the warehouse project at PT "XYZ," the "Waiting" factor is the main constraint during the construction process. The waiting referred to consists of:

- Administrative issues originating from the owner.
- The foreman waiting for information from the contractor, and the contractor waiting for information from the owner.
- Workers waiting for work instructions from the foreman.
- Workers waiting for materials from the storage warehouse.

It means that the source of the issues is not solely attributed to the contractor but can also originate from the owner. Therefore, there is a need for intensive discussions between both parties (owner and contractor) mainly during the before construction, construction, and after construction phases. This is crucial to minimize miscommunication, errors, or delays in information exchange between them.

FURTHER RESEARCH

Further research is highly necessary due to the unique nature of each construction project. As a result, definitions, explanations, and examples of NVA waste will become more varied. Consequently, contractors, consultants, and owners will receive valuable inputs regarding NVA waste and can take preventive measures before commencing their construction projects.

REFERENCES

“Analysis of NVA Waste in PT "XYZ" Warehouse Building Project, West Java, Indonesia”

Certificate of Publication

This is hereby awarding the Certificate **Nurlaelah** In recognition of the publication of the paper entitled

"ANALYSIS OF NVA WASTE IN PT "XYZ" WAREHOUSE BUILDING PROJECT, WEST JAVA, INDONESIA"

Published in **Volume 08 Issue 08** AUGUST 2023 In

Engineering and Technology Journal

The Mentioned Research paper is measured up to the required standard.

Registration No. - ETJ082023cx0804

Publication Head
Articles

Design and Development of a Scare Robot for Classify Products Using Image Processing
Ho Vinh Nguyen
2492-2502
https://doi.org/10.47191/ejtj/v8i8.01

FDM 3D Printing as an Alternative Form of Making Pattern for Metal Casting: A Comparison with Wood-Based Pattern
Was Muhammed Rasyid wan Mohd Azam, Lestarianda Liea, Nor Shamini Shani, Nor Emwaa Shani, Sitin Nor Aanaliza Mohd Hashim, Mohammad Faris Arief Mansor
2503-2507
https://doi.org/10.47191/ejtj/v8i8.02

Effectively Using E-Learning Teaching Methods – Experience Evidence at the Banking University of Ho Chi Minh City
Dr. Nguyen Thuy Trang, Dr. Luong Xuan Minh
2508-2514
https://doi.org/10.47191/ejtj/v8i8.03

Analysis of NVA Waste in PT “XYZ” Warehouse Building Project, West Java, Indonesia
Nurhadi
2515-2522
https://doi.org/10.47191/ejtj/v8i8.04

Hydraulic Coiled Tubing Tractor Technology Extends the Accessibility of Coiled Tubing in Horizontal Wells, Allowing Better Well Intervention – Case Study
Alex Zohah, Alejandro Gongo-Pozo, Taner-Valea Chis, Joel Ulloa Getierze
2523-2530
https://doi.org/10.47191/ejtj/v8i8.05

Design and Development of a Coconut Shell Shaver Machine
Reza C. Ta, Edipado C. Menos, Reinaldo M. Schrag
2531-2535
https://doi.org/10.47191/ejtj/v8i8.06

Boycotting Calculation on Barge Ship in Process Loading Unloading Material Stockyard Ship to Port
Susana Sengap, Samuel Febuary Khairulzna
2536-2539
https://doi.org/10.47191/ejtj/v8i8.07
Congratulations Your Article published (Manuscript ID:ETJV08107:33)

ETJ JOURNAL
MOSAIC IJTC
2 Aug 2023, 18.14 (ID hari yang lalu)

Dear Author,
Nurulelah

Congratulations… Your article “ANALYSIS OF NWA WASTE IN PT "XYZ" WAREHOUSE BUILDING PROJECT, WEST JAVA, INDONESIA” is published in our AUGUST issue. please check the links:

Article Details:

Article DOI : https://doi.org/10.47191/pjy-48.04

Google Scholar links : https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HKbP4wAAAAJ&start=20&pagesize=80&citation_for_view=HKbP4wAAAAJ:JDFYTLwNnFC

Indexcopernicus Link : https://journals.indexcopernicus.com/search/article?articleId=5686906

Zenodo Link : https://zenodo.org/record/8211144

Best Regards,
Nurulelah
Journal Manager
Engineering and Technology Journal
Everest Journals

Nurulelah Nurulelah
nurulelah@unj.ac.id

5 Aug 2023, 05.46 (ID hari yang lalu)

Thank you so much for the great news!

Best Regards,
Dr. Nurulelah, STMT
