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WELCOME MESSAGE FROM DEAN 

Distinguished guests and participants, 

Assalamu’alaikum warahmatullahi wabarakatuh 

Firstly, let us thank Allah Almighty, who has given us His blessings and mercies so we can gather 

today, in good health and spirits. 

On behalf of the Faculty of Industrial Technology, Universitas Islam Indonesia (UII), I welcome our 

speakers and participants. 

The development of technology has become very rapid with the advent of Industry 4.0, and almost all 

aspects of our lives have been influenced by it.  

In the field of health, technology and information systems have become vital tools to discuss. The 

demands of the health community must be followed by the development of the technology used. Healthcare 

technology is one of the technologies most affected by global regulations. Because technology is the only 

instrument to generate added value, mastery and the ability to create technology becomes a crucial problem. 

Also, the application of information technology in the field of health is believed to provide various 

benefits for health care providers. With the support of these technologies, the benefits that can be obtained include 

the availability of accurate and comprehensive patient health information so that professionals can provide the 

best possible treatment.  

To develop health technology, scientific meetings are needed as a means for sharing, disseminating, and 

communicating between practitioners, researchers, government agencies, non-governmental institutions, and 

industry.  

  On this occasion, the Electrical Engineering Department, Faculty of Industrial Technology, Universitas 

Islam Indonesia held The International Biomedical Instrumentation and Technology Conference, IBITeC 2021. 

This seminar is the second conference organized by the Electrical Engineering Department and co-organized by 

Diponegoro University (UNDIP) and Universiti Teknologi Malaysia (UTM). We hope this activity can provide a 

change of knowledge for researchers, practitioners, students, and lecturers to improve their abilities. 

     To our speakers and all those who support the seminar, we thank you for your cooperation in conducting 

this seminar. Finally, our congratulations on attending the seminar. Hopefully, what we achieve here will benefit 

institutions and society as a whole. 

Wassalamu’alaikum warahmatullahi wabarakatuh 

Dean, 

Faculty of Industrial Engineering 

Prof. Dr. Ir. Hari Purnomo, M.T 
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WELCOME MESSAGE FROM CONFERENCE CHAIR 

 

Distinguished guests, respected colleagues, ladies, and gentlemen,  

 

Assalamu’alaikum. All praise is for Allah, who guided us to do good deeds and gave us the health bounty. 

On behalf of the 2nd International Biomedical Instrumentation and Technology Conference (IBITeC) 2021 

Committee, I would like to welcome you to this biannual conference held by the Department of Electrical 

Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia, Yogyakarta. This conference is co-

sponsored by IEEE Communication Society Indonesia Chapter, and co-organized by the Center for 

BioMechanics, Bio-Materials, Bio Mechatronics, and Bio Signal Processing (CBIOM3S) of Diponegoro 

University (UNDIP), Universiti Teknologi Malaysia (UTM), and UII IEEE Student Branch. The goal of this 

conference is to facilitate researchers, practitioners, students, and lecturers around the world to publish, explore 

and share their latest research in Biomedical Engineering and related fields in Biomedical Sensors Development, 

Biomedical and Informatics, Biomedical Imaging, Internet of Things (IoT) and Healthcare Information System 

with its associated topics. This year’s theme is “The Empowerment of Healthcare Technology to Achieve 

Universal Health Coverage.”  

 

The committee is delighted with the positive response of researchers to this conference. We received 50 

submissions from Germany, France, Portugal, Morocco, Malaysia, Vietnam, China, India, Pakistan, Iraq, and our 

own Indonesia. The papers were peer-reviewed by our reviewers from several countries to maintain the quality of 

this conference. The acceptance rate of the 2nd IBITeC 2021 is 58%. All accepted and presented papers will be 

forwarded for consideration to be published in the IEEE Xplore Digital Library and indexed by Indexing Service 

Partners (Scopus, INSPEC, Semantic Scholar, EBSCO, and others that are available/eligible). 

 

We are grateful for the contributions of our invited speakers. We will have three keynote speakers that 

we believe could spread the new insight for biomedical engineering disciplines to follow the industry 4.0 needs. 

The organization of a conference is very much a team effort. I want to thank all committees, editorial team, event-

organizer, reviewers, and other parties who have carried a vast and complicated workload. The 2nd IBITeC 2021 

strives to offer plenty of opportunities, especially networking. Authors and participants have the chance to meet 

and interact with each other to share and transfer their knowledge in similar fields. We hope that you can benefit 

from this conference during discussions and, most importantly, networking among our peers. We hope that this 

conference will be unforgettable moments and experiences. Thank you. Wassalamu’alaikum. 

 

Yogyakarta, October 2021 

Firdaus, Ph.D 

Conference Chair of The 2nd IBITeC 2021 
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Saeful Bahri 
Doctoral Program of Engineering Physics         

Suprijanto 
Instrumentation and Control Research Group 

Faculty of Industrial Technology 

Abstract— Lung ultrasound can potentially diagnose lung 

abnormalities such as pneumonia and covid-19, but it requires 

high experience. Covid-19, as a global pandemic, has similar 

common symptoms as pneumonia. The proper diagnosis of 

covid-19 and pneumonia necessitates clinicians' high expertise 

and skill to classify Covid-19 disease. This paper presents an 

approach to differentiate pneumonia and covid-19 based on 

texture analysis of ultrasound images. The proposed scheme is 

based on the Gray Level Co-occurrence Matrix (GLCM) 

features computing with Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and gamma transformation for image 

enhancement. The results of the feature extraction analysis for 

lung ultrasound images suggest that differentiating pneumonia 

and Covid-19 is possible based on image texture features. 

Keywords— GLCM, CLAHE, gamma transformation, 

pneumonia, covid-19, texture analysis, lung ultrasound  

I. INTRODUCTION

Pneumonia is one of the world's leading health sector 
problems, including in Indonesia, especially pneumonia in 
children. Pneumonia is an infectious disease, the leading 
cause of death in children under five, with more than 
800,000 cases, or about 2,200 every day worldwide [1]. 

In some situations, the radiological evaluation included 
the chest X-ray (CXR) is needed for the initial imaging step 
in diagnosing pneumonia in children [2].  CXR as a standard 
imaging mode can be found easily in almost all hospitals or 
health centers, making CXR the most popularly used to 
diagnose lung disease. Another X-ray-based imaging mode 
that is the gold standard with the highest level of accuracy 
used to diagnose abnormalities in the lungs is Computed 
Tomography (CT).  Although its availability is still limited, 
CT has played an essential role in diagnosing lung diseases. 
Despite its excellent accuracy, computed tomography (CT) 
cannot be employed as a first-line radiological evaluation 
due to high ionizing radiation exposure, availability, and 
expense [2]. 

One alternative medical imaging method apart from 
using CXR and CT suggested to apply is lung ultrasound 
(LUS).  It is considered safe, especially for pediatric patients, 
because it is easily performed by clinicians at the point of 
care, inexpensive, avoids exposure to radiation [3], [4], and 
is portable. It can be performed at the bedside [4], [5]. LUS 
has higher sensitivity compared to CXR [3], [5]–[9]. Lung 
ultrasound is also safe for routine and repeated examinations 
with high frequency[4]. Lung ultrasonography is a powerful 
tool for identifying and evaluating lung consolidation [6]. 

Recently, in the massive spreading of Covid-19 globally, 
the use of traditional imaging is significantly more 
challenging to do in this situation than lung ultrasonography 
in the case of a significant spread. In this case, children with 
COVID-19 will be safely investigated by ultrasound 
imaging, and the use of a chest CT scan is not recommended 
[10]. 

Covid-19 has common symptoms that are similar to 
pneumonia [4]. On a lung ultrasound image, some image 
artifacts such as a glass rocket, confluent B-lines, thick 
irregular pleural lines, and subpleural may arise on the 
COVID-19 patient as same as the symptoms on pneumonia 
patients [4], [9], [11].  Diagnosis based on direct visual 
inspection of lung ultrasound images requires highly 
experienced clinicians to differentiate pneumonia and covid-
19.  

To reduce the inconsistent diagnosis of lung 
abnormalities, extracting specific features methods on the 
lung ultrasound image has been extensively investigated. 
The feature extraction based on pleural lines analysis has 
been proposed in [13]. Based on its features, normal lung 
and pneumonia based on ultrasound images can be 
identified.  

In the other studies in [12], the features extraction using 
the GLCM specific on the pleural lines has been proposed. 
The method tested to differentiate normal lung and acute 
respiratory distress syndrome (ARDS) or acute cardiogenic 
pulmonary edema (CPE). In [12], the GLCM feature-based 
correlation and homogeneity were reported as the potential 
texture features.  

This study proposes analyzing the texture of ultrasound 
images based on GLCM as mentioned in [12]. In our work, 
extracting features calculation is not specific only on the 
pleural lines reported in [12]. This work investigated the 
whole area of images to consider some potential signs of 
lung abnormalities, such as A-lines, B-lines, thick irregular 
pleural lines, or subpleural consolidations. 

For normalization contrast range dynamic, pre-processing 
is proposed based on Contrast Limited Adaptive Histogram 
Equalization (CLAHE) and gamma transformation. The 
proposed scheme in this work evaluated the covid-19-
positive lungs and pneumonia lesions with healthy tissues. 

II. METHOD

The proposed method for analyzing texture features of LUS 
images is summarized on the block diagram as shown in 

978-1-6654-4179-7/21/$31.00 ©2021 IEEE

Texture Analysis of Ultrasound Images to 
Differentiate Pneumonia and Covid-19 
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Fig.1. This work approach is divided into three major 
stages: image acquisition, texture feature extraction, and 
analysis. We use the images in this work by converting a 
video LUS file. Histogram equalization and gamma 
transformation were applied for the contrast enhancement 
process. The analysis stage uses GLCM feature extraction to 
distinguish labeled pictures into three categories: covid-19, 
pneumonia, and regular. Spyder v4.1.5 and Jupiter 
Notebook v6.1.4, both based on Python, were used to 
perform feature extraction and analysis on an MSI laptop 
with an Intel(R) Core (TM) i5-10200H CPU @ 2.40GHz, 
16 GB RAM, and an NVIDIA GeForce RTX 3060 Laptop 
GPU. The explanation of each stage description is below. 
 

A. Converting LUS Video Files to Images 

The freely available online lung ultrasound images and 
videos in this work were obtained from the POCOVID-Net 
dataset [14] for covid-19, pneumonia, and regular labeled 
data and have various frame sizes, framerate, and format 
files. The initial process started by converting the LUS video 
to images before the image processing process. The image 
resizes of an image frame are needed to allow for improved 
comparability of condition datasets with each video frame.  

 

Fig. 1 Block diagram of the image processing stages 

 

This work analyzes the image from the [14] dataset 
downloaded on Jan. 5, 2021. The dataset consists of 129 total 
LUS videos with 122 videos recorder using a convex 
transducer and seven videos using a linear transducer with 
various frame sizes (between 139x139 and 1080x1080), 

different framerate (between 12 and 60 frames/sec) and 
stored in AVI, MP4, MOV, GIF and MPEG files format. The 
LUS videos dataset has covid-19 (33 videos), pneumonia (37 
videos), and regular/normal lung (59 videos) labels. Fig.2 
shows a sample of the images we use in this study. 

 

 
Fig.2 Sample of the images of lung diseases: covid-19, pneumonia, and 
normal/regular lung 

 

B. Image Pre-processing 

In the image pre-processing stages, as shown in Fig.1, 
each video file is converted to image files with frequency 
2Hz and randomly selected by 100 images for each labeled 
data (covid-19, pneumonia, and regular/normal). For pre-
processing,  an image enhancement and following gamma 
correction is done before the step of feature extraction.  

For image enhancement purposes, Contrast Limited 
Adaptive Histogram Equalization (CLAHE) was applied.  
For medical image, the excellent performance of CLAHE 
has been reported in [15], [16]. Specific for ultrasound 
images, CLAHE could reduce blurring resulting from the 
speckle filtering [16]. 

CLAHE works on a specific small area of an image (tile) 
rather than the complete image. The neighboring tiles are 
merged using bilinear interpolation to remove imaginary 
boundaries. The parameters size of tiles and the histogram's 
clip level could be set as CLAHE parameters to optimize the 
image enhancement process. CLAHE work is based on 
partitioning the image into numerous non-overlapping, 
nearly equal-sized areas [17]. The histogram of each region 
is calculated initially in this method. After that, a clip limit 
for clipping histograms is calculated based on a specified 
contrast expansion limit. The height of each histogram is 
redistributed so that it does not exceed the clip limit. Finally, 
cumulative distribution functions (CDF) of the resultant 
contrast constrained histograms for grayscale mapping are 
determined. Pixels are mapped using the CLAHE technique 
by linearly integrating the mappings of the four closest 
regions [17]. 

Furthermore, to optimize contrast range dynamic of 
image resulting from CLAHE process, Power law 
transformations has used [18]. Its transformations can be 
formulated as   

s = c rγ          (1) 

In equation (1), s and r represent the pixels' gray levels in 
the output and input images, respectively, and c is a constant. 
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The value of c =1 was selected in this work. Because the 
symbol γ is gamma, this transformation is also known as 
gamma transformation.  When γ >1, the input's narrow range 
of high grayscale is mapped to a wide output, enhancing the 
contrast of high gray areas. When γ <1, the input's narrow 
range of low grayscale is mapped to a wide output range, 
increasing the contrast in the low gray area. The value of γ 
=1.5 was selected in this work. 

 

C. Features Extraction 

The gray-level co-occurrence matrix (GLCM) has been 
frequently employed to characterize textures in LUS images 
[19], [20]. As defined by Haralick and Shanmugam in [17], 
this method counts pairs of horizontally adjacent pixels in a 
grayscale version of the image. The properties collected by 
this approach have specific characteristics that are detailed 
in-depth elsewhere. The GLCM was computed using four 
adjacency directions (00, 450, 900, and 1350), and eight gray 
levels with four out of 28 textural elements in [21] were 
used. Table I shows the selected features for GLCM 
computing. 

 

TABLE I.  COMPUTED GLCM FEATURES [21]  

Computed 

Features 
 Description 

Energy  Known as the angular second moment, it 
is a measure of the global homogeneity of 
an image. 

Contrast A measure of the local variations in an 
image 

Entropy  A measure of information content. It 
measures the randomness of the intensity 
distribution. A homogeneous scene has a 
high entropy 
 

Homogeneity A measure of a local homogeneity of an 
image, also known as inverse difference 
moment 

 

In this study, the extraction of texture features was 
computed using Eqs. (2), (3), (4), and (5) were for energy, 
contrast, entropy, and homogeneity features [21]. 

������ =  ∑ ∑ 
��, ���2��� =1
��=1   

 

(2) 
 

�������� = ∑ �| − �|�2�� −1
�=0 ∑ ∑ ��, ����� =1

��=1   

 

  (3) 
 

������� = − ∑ ∑ ��, �� . ���
��, ������ =1
��=1   

 

(4) 
 

�� ������� = ∑ ∑ ! 1
1+�−� �2 ��, ��#��� =1

��=1   

 

(5) 
 

Notations:      

Ng   : Number of distinct gray levels in the quantized 
image 

p(i, j)   : (i, j)th entry in a normalized gray-tone spatial-
dependence matrix 

 

III. RESULT 

This study utilizes the feature extraction of gray level co-
occurrence matrix (GLCM) ultrasound imagery to 
differentiate between covid-19 disease, pneumonia, and 
regular/normal. Ultrasound imagery data was taken as much 
as 300 data, with each composition consisting of 100 images 
for the label covid-19, pneumonia, and regular/normal. The 
images from each data resized to 128x128 pixels size and 
then followed by pre-processing of the images. The next 
process is to determine the GLCM matrix in a directional 
formation of  0°, 45°, 90°, and 135° and the calculated 
feature extraction characteristics for energy, contrast, 
entropy, and homogeneity.  

The mean values and standard deviation values of the 
feature extraction characteristics of energy, contrast, entropy, 
and homogeneity for all formations of the GLCM matrix 
direction are given in Table II. 

 

TABLE II.  COMPARISON OF TEXTURE FEATURES (MEAN ± SD) 
BETWEEN PATIENTS WITH COVID-19, PNEUMONIA, AND REGULAR 

GLCM Features 
Covid-19 

(n=100) 

Pneumonia 

(n=100) 

Regular 

(n=100) 

energy_0 0.03 ± 0.04 0.11 ±0.09 0.15 ± 0.16 

homogeneity_0      90.96 ± 58.07 63.00 ± 26.03 39.44 ± 22.91 

entropy_0 7.17 ± 1.04 5.81 ± 0.99 5.26 ± 1.46 

contrast_0 89.96 ± 58.07 62.00 ± 26.03 38.44 ± 22.91 

energy_45       0.03 ± 0.04 0.11 ± 0.09 0.14 ± 0.16 

homogeneity_45 91.50 ± 58.46 63.33 ± 26.20 39.71 ± 23.03 

entropy_45 7.18 ± 1.04 5.83 ± 0.99 5.28 ± 1.47 

contrast_45 90.50 ± 58.46 62.33 ± 26.20 38.71 ± 23.03 

energy_90 0.03 ± 0.04 0.11 ± 0.09 0.14 ± 0.16 

homogeneity_90 266.67±187.41 144.91±64.19 88.97 ± 63.10 

entropy_90 7.42 ±1.10 5.92 ± 1.05 5.42 ± 1.55 

contrast_90 265.67±187.41 143.91± 64.19 87.97 ± 63.10 

energy_135 0.03 ± 0.04 0.10 ± 0.09 0.14 ± 0.16 

homogeneity_135 287.01±194.78 171.12±79.56 106.06 ±77.05 

entropy_135 7.50 ± 1.08 6.08 ± 1.03 5.54 ± 1.57 

contrast_135 286.01±194.78 170.12± 79.56 105.06±77.05 

 

There were statistically significant changes in 4 gray-
level co-occurrence matrix features between covid-19, 
pneumonia, and regular lung imaging. The covid-19 
subgroup had the highest cluster homogeneity, entropy, and 
contrast but lowest cluster energy than pneumonia and 
regular/normal subgroup. For another comparison, the 
pneumonia subgroup had higher cluster homogeneity, 
entropy, and contrast but lowest cluster energy than the 
normal subgroup. 

 Fig.3 shows the visualization of feature extraction 
characteristics of energy, contrast, entropy, and homogeneity 
for 0 deg direction. Using 100 sample images for the labeled 
data as covid-19, pneumonia, and regular/normal, extraction 
characteristics of energy, contrast, entropy, and homogeneity 
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for 0 deg direction in Fig. 3 generally show that the covid-19 
data have the highest value than pneumonia and 
regular/normal. In contrast, the energy feature has the lowest 
value. These figures in Fig.3 could differentiate the covid-19, 
pneumonia, and regular/normal.  

 

 
Fig. 3 The visualization of computed feature results in 00 direction for (a) 
energy, (b) homogeneity, (c) entropy, and (d) contrast with labeled data are 
covid-19, pneumonia, and regular/normal. 

 
 
While the maximum values of the four GLCM features 

for covid-19, pneumonia, and regular lung imaging in Table 

III had the highest values for cluster contrast, homogeneity, 
and entropy for the 1350 direction, the covid-19 subgroup 
has the lowest cluster energy than pneumonia and normal 
subgroup. 

TABLE III.  THE MAXIMUM VALUE OF GLMC FEATURES  

GLCM Features 

Maximum Value 

Label '0' 

(Covid-19) 

Label '1' 

(Pneumonia) 

Label '2' 

(Normal) 

contrast_0  214.348 153.389 139.612 

contrast_45 215.641 154.596 140.454 

contrast_90 735.274 428.949 341.402 

contrast_135 787.464 522.624 385.744 

energy_0 0.178 0.403 0.618 

energy_45 0.176 0.405 0.627 

energy_90 0.175 0.404 0.625 

energy_135  0.171 0.394 0.619 

entropy_0 8.630 7.605 8.213 

entropy_45 8.630 7.631 8.224 

entropy_90 8.974 7.803 8.484 

entropy_135 9.016 7.852 8.520 

homogeneity_0 215.348 154.389 140.612 

homogeneity_45 216.641 155.596 141.454 

homogeneity_90 736.274 429.949 342.402 

homogeneity_135 788.464 523.624 386.744 

 
The GLCM-based extraction features method with our 

pre-processing proposed could differentiate pneumonia, 
Covid-19, and normal lung. It can be combined with 
machine learning classification approaches to create a 
decision support system for diagnosing and classifying 
covid-19, pneumonia, and normal lung. 
 

IV. CONCLUSION 

The analysis for lung ultrasound images suggests that 
differentiation of pneumonia and Covid-19 is possible based 
on image texture features. The covid-19 subgroup had the 
highest cluster homogeneity, entropy, and contrast but 
lowest cluster energy than pneumonia and normal subgroup. 
The covid-19 subgroup had the highest cluster contrast, 
homogeneity, and entropy, and the lowest cluster energy 
than pneumonia and normal subgroup in the 1350 direction. 

For further research, GLCM extraction features can be 
combined with machine learning classification approaches 
to create a decision support system for diagnosing and 
classifying covid-19, pneumonia, and normal lung. 
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